Beto de Paola 9ecdb5a80d Adding bitly links to update later 7 months ago
..
RAG aa60f75d44 Fixed all "Open in Colab" absolute paths 10 months ago
finetuning 691bcce716 use absolute links 10 months ago
inference 73e8da5176 deprecate octoai 10 months ago
responsible_ai 5907e0c23e Removed installation and training outputs from the notebook based on review 8 months ago
README.md 9ecdb5a80d Adding bitly links to update later 7 months ago
build_with_llama_4.ipynb d5b3422d7c Fix Maverick typo (#912) 8 months ago
build_with_llama_api.ipynb fff336c664 Adjusting the badges for the notebook and the utm params, second attempt 7 months ago

README.md

Geting Started

<a href="https://bit.ly/llama-api-gs"><img src="https://img.shields.io/badge/Llama_API-Join_Waitlist-brightgreen?logo=meta" /></a>
<a href="https://llama.developer.meta.com/docs?utm_source=llama-cookbook&utm_medium=readme&utm_campaign=getting_started"><img src="https://img.shields.io/badge/Llama_API-Documentation-4BA9FE?logo=meta" /></a>

<a href="https://github.com/meta-llama/llama-models/blob/main/models/?utm_source=llama-cookbook&utm_medium=readme&utm_campaign=getting_started"><img alt="Llama Model cards" src="https://img.shields.io/badge/Llama_OSS-Model_cards-green?logo=meta" /></a>
<a href="https://www.llama.com/docs/overview/?utm_source=llama-cookbook&utm_medium=readme&utm_campaign=getting_started"><img alt="Llama Documentation" src="https://img.shields.io/badge/Llama_OSS-Documentation-4BA9FE?logo=meta" /></a>
<a href="https://huggingface.co/meta-llama"><img alt="Hugging Face meta-llama" src="https://img.shields.io/badge/Hugging_Face-meta--llama-yellow?logo=huggingface" /></a>

<a href="https://github.com/meta-llama/synthetic-data-kit"><img alt="Llama Tools Syntethic Data Kit" src="https://img.shields.io/badge/Llama_Tools-synthetic--data--kit-orange?logo=meta" /></a>
<a href="https://github.com/meta-llama/llama-prompt-ops"><img alt="Llama Tools Syntethic Data Kit" src="https://img.shields.io/badge/Llama_Tools-llama--prompt--ops-orange?logo=meta" /></a>

If you are new to developing with Meta Llama models, this is where you should start. This folder contains introductory-level notebooks across different techniques relating to Meta Llama.

  • The Build_with_Llama 4 notebook showcases a comprehensive walkthrough of the new capabilities of Llama 4 Scout models, including long context, multi-images and function calling.
  • The Build_with_Llama API notebook highlights some of the features of Llama API.
  • The inference folder contains scripts to deploy Llama for inference on server and mobile. See also 3p_integrations/vllm and 3p_integrations/tgi for hosting Llama on open-source model servers.
  • The RAG folder contains a simple Retrieval-Augmented Generation application using Llama.
  • The finetuning folder contains resources to help you finetune Llama on your custom datasets, for both single- and multi-GPU setups. The scripts use the native llama-cookbook finetuning code found in finetuning.py which supports these features: