12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import tiktoken
- # Assuming result_average_token is a constant, use UPPER_CASE for its name to follow Python conventions
- AVERAGE_TOKENS_PER_RESULT = 100
- def get_token_limit_for_model(model: str) -> int:
- """Returns the token limit for a given model."""
- if model == "gpt-3.5-turbo-16k":
- return 16384
- # Consider adding an else statement or default return value if more models are expected
- def fetch_encoding_for_model(model="gpt-3.5-turbo-16k"):
- """Fetches the encoding for the specified model."""
- try:
- return tiktoken.encoding_for_model(model)
- except KeyError:
- print("Warning: Model not found. Using 'cl100k_base' encoding as default.")
- return tiktoken.get_encoding("cl100k_base")
- def calculate_num_tokens_for_message(message: str, model="gpt-3.5-turbo-16k") -> int:
- """Calculates the number of tokens used by a message."""
- encoding = fetch_encoding_for_model(model)
- # Added 3 to account for priming with assistant's reply, as per original comment
- return len(encoding.encode(message)) + 3
- def split_text_into_chunks(context: dict, text: str) -> list[str]:
- """Splits a long text into substrings based on token length constraints, adjusted for question generation."""
- # Adjusted approach to calculate max tokens available for text chunks
- model_token_limit = get_token_limit_for_model(context["model"])
- tokens_for_questions = calculate_num_tokens_for_message(context["question_prompt_template"])
- estimated_tokens_per_question = AVERAGE_TOKENS_PER_RESULT
- estimated_total_question_tokens = estimated_tokens_per_question * context["total_questions"]
-
- # Ensure there's a reasonable minimum chunk size
- max_tokens_for_text = max(model_token_limit - tokens_for_questions - estimated_total_question_tokens, model_token_limit // 10)
-
- encoded_text = fetch_encoding_for_model(context["model"]).encode(text)
- chunks, current_chunk = [], []
- print(f"Splitting text into chunks of {max_tokens_for_text} tokens, encoded_text {len(encoded_text)}", flush=True)
- for token in encoded_text:
- if len(current_chunk) + 1 > max_tokens_for_text:
- chunks.append(fetch_encoding_for_model(context["model"]).decode(current_chunk).strip())
- current_chunk = [token]
- else:
- current_chunk.append(token)
-
- if current_chunk:
- chunks.append(fetch_encoding_for_model(context["model"]).decode(current_chunk).strip())
-
- return chunks
|