code_infilling_example.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. # from accelerate import init_empty_weights, load_checkpoint_and_dispatch
  4. import fire
  5. import torch
  6. import os
  7. import sys
  8. import time
  9. from transformers import AutoTokenizer
  10. from llama_recipes.inference.safety_utils import get_safety_checker
  11. from llama_recipes.inference.model_utils import load_model, load_peft_model
  12. def main(
  13. model_name,
  14. peft_model: str=None,
  15. quantization: bool=False,
  16. max_new_tokens =100, #The maximum numbers of tokens to generate
  17. prompt_file: str=None,
  18. seed: int=42, #seed value for reproducibility
  19. do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
  20. min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens
  21. use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
  22. top_p: float=0.9, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
  23. temperature: float=0.6, # [optional] The value used to modulate the next token probabilities.
  24. top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
  25. repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
  26. length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
  27. enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
  28. enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
  29. enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5
  30. enable_llamaguard_content_safety: bool=False, # Enable safety check with Llama-Guard
  31. enable_promptguard_safety: bool = False,
  32. use_fast_kernels: bool = True, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
  33. **kwargs
  34. ):
  35. if prompt_file is not None:
  36. assert os.path.exists(
  37. prompt_file
  38. ), f"Provided Prompt file does not exist {prompt_file}"
  39. with open(prompt_file, "r") as f:
  40. user_prompt = f.read()
  41. else:
  42. print("No user prompt provided. Exiting.")
  43. sys.exit(1)
  44. # Set the seeds for reproducibility
  45. torch.cuda.manual_seed(seed)
  46. torch.manual_seed(seed)
  47. model = load_model(model_name, quantization, use_fast_kernels)
  48. model.config.tp_size=1
  49. if peft_model:
  50. model = load_peft_model(model, peft_model)
  51. model.eval()
  52. tokenizer = AutoTokenizer.from_pretrained(model_name)
  53. safety_checker = get_safety_checker(enable_azure_content_safety,
  54. enable_sensitive_topics,
  55. enable_salesforce_content_safety,
  56. enable_llamaguard_content_safety,
  57. enable_promptguard_safety
  58. )
  59. # Safety check of the user prompt
  60. safety_results = [check(user_prompt) for check in safety_checker]
  61. are_safe = all([r[1] for r in safety_results])
  62. if are_safe:
  63. print("User prompt deemed safe.")
  64. print(f"User prompt:\n{user_prompt}")
  65. else:
  66. print("User prompt deemed unsafe.")
  67. for method, is_safe, report in safety_results:
  68. if not is_safe:
  69. print(method)
  70. print(report)
  71. print("Skipping the inference as the prompt is not safe.")
  72. sys.exit(1) # Exit the program with an error status
  73. batch = tokenizer(user_prompt, return_tensors="pt")
  74. batch = {k: v.to("cuda") for k, v in batch.items()}
  75. start = time.perf_counter()
  76. with torch.no_grad():
  77. outputs = model.generate(
  78. **batch,
  79. max_new_tokens=max_new_tokens,
  80. do_sample=do_sample,
  81. top_p=top_p,
  82. temperature=temperature,
  83. min_length=min_length,
  84. use_cache=use_cache,
  85. top_k=top_k,
  86. repetition_penalty=repetition_penalty,
  87. length_penalty=length_penalty,
  88. **kwargs
  89. )
  90. e2e_inference_time = (time.perf_counter()-start)*1000
  91. print(f"the inference time is {e2e_inference_time} ms")
  92. filling = tokenizer.batch_decode(outputs[:, batch["input_ids"].shape[1]:], skip_special_tokens=True)[0]
  93. # Safety check of the model output
  94. safety_results = [check(filling) for check in safety_checker]
  95. are_safe = all([r[1] for r in safety_results])
  96. if are_safe:
  97. print("User input and model output deemed safe.")
  98. print(user_prompt.replace("<FILL_ME>", filling))
  99. else:
  100. print("Model output deemed unsafe.")
  101. for method, is_safe, report in safety_results:
  102. if not is_safe:
  103. print(method)
  104. print(report)
  105. if __name__ == "__main__":
  106. fire.Fire(main)