llama_dataset.py 1.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. # Copyright (c) Meta Platforms, Inc. and affiliates.
  2. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
  3. # For dataset details visit: https://huggingface.co/datasets/samsum
  4. import copy
  5. import datasets
  6. from datasets import Dataset, load_dataset
  7. import itertools
  8. B_INST, E_INST = "[INST]", "[/INST]"
  9. def tokenize_dialog(q_a_pair, tokenizer):
  10. prompt_tokens = [tokenizer.encode(f"{tokenizer.bos_token}{B_INST} {(question).strip()} {E_INST}", add_special_tokens=False) for question in q_a_pair["question"]]
  11. answer_tokens = [tokenizer.encode(f"{answer.strip()} {tokenizer.eos_token}", add_special_tokens=False) for answer in q_a_pair["answer"]]
  12. dialog_tokens = list(itertools.chain.from_iterable(zip(prompt_tokens, answer_tokens)))
  13. dialog_tokens = list(itertools.chain.from_iterable(zip(prompt_tokens, answer_tokens)))
  14. #Add labels, convert prompt token to -100 in order to ignore in loss function
  15. labels_tokens = [len(c)*[-100,] if i % 2 == 0 else c for i,c in enumerate(dialog_tokens)]
  16. combined_tokens = {
  17. "input_ids": list(itertools.chain(*(t for t in dialog_tokens))),
  18. "labels": list(itertools.chain(*(t for t in labels_tokens))),
  19. }
  20. return dict(combined_tokens, attention_mask=[1]*len(combined_tokens["input_ids"]))
  21. def get_custom_dataset(dataset_config, tokenizer, split):
  22. dataset = load_dataset('json', data_files=dataset_config.data_path)
  23. dataset = dataset.map(lambda sample: {
  24. "question": sample["question"],
  25. "answer": sample["answer"],
  26. },
  27. batched=True,
  28. )
  29. dataset = dataset.map(lambda x: tokenize_dialog(x, tokenizer))
  30. return dataset["train"]