| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 | import sysfrom pathlib import Pathfrom typing import List, Literal, TypedDictfrom unittest.mock import patchimport pytestimport torchfrom llama_recipes.inference.chat_utils import read_dialogs_from_fileROOT_DIR = Path(__file__).parents[1]CHAT_COMPLETION_DIR = ROOT_DIR / "recipes/inference/local_inference/chat_completion/"sys.path = [CHAT_COMPLETION_DIR.as_posix()] + sys.pathRole = Literal["user", "assistant"]class Message(TypedDict):    role: Role    content: strDialog = List[Message]B_INST, E_INST = "[INST]", "[/INST]"B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"def _encode_header(message, tokenizer):    tokens = []    tokens.extend(tokenizer.encode("<|start_header_id|>"))    tokens.extend(tokenizer.encode(message["role"]))    tokens.extend(tokenizer.encode("<|end_header_id|>"))    tokens.extend(tokenizer.encode("\n\n"))    return tokensdef _encode_message(message, tokenizer):    tokens = _encode_header(message, tokenizer)    tokens.extend(tokenizer.encode(message["content"].strip()))    tokens.extend(tokenizer.encode("<|eot_id|>"))    return tokensdef _format_dialog(dialog, tokenizer):    tokens = []    tokens.extend(tokenizer.encode("<|begin_of_text|>"))    for msg in dialog:        tokens.extend(_encode_message(msg, tokenizer))    tokens.extend(_encode_header({"role": "assistant", "content": ""}, tokenizer))    return tokensdef _format_tokens_llama3(dialogs, tokenizer):    return [_format_dialog(dialog, tokenizer) for dialog in dialogs]def _format_tokens_llama2(dialogs, tokenizer):    prompt_tokens = []    for dialog in dialogs:        if dialog[0]["role"] == "system":            dialog = [                {                    "role": dialog[1]["role"],                    "content": B_SYS                    + dialog[0]["content"]                    + E_SYS                    + dialog[1]["content"],                }            ] + dialog[2:]        assert all([msg["role"] == "user" for msg in dialog[::2]]) and all(            [msg["role"] == "assistant" for msg in dialog[1::2]]        ), (            "model only supports 'system','user' and 'assistant' roles, "            "starting with user and alternating (u/a/u/a/u...)"        )        """        Please verify that your tokenizer support adding "[INST]", "[/INST]" to your inputs.        Here, we are adding it manually.        """        dialog_tokens: List[int] = sum(            [                tokenizer.encode(                    f"{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} ",                )                + [tokenizer.eos_token_id]                for prompt, answer in zip(dialog[::2], dialog[1::2])            ],            [],        )        assert (            dialog[-1]["role"] == "user"        ), f"Last message must be from user, got {dialog[-1]['role']}"        dialog_tokens += tokenizer.encode(            f"{B_INST} {(dialog[-1]['content']).strip()} {E_INST}",        )        prompt_tokens.append(dialog_tokens)    return prompt_tokens@pytest.mark.skip_missing_tokenizer@patch("chat_completion.AutoTokenizer")@patch("chat_completion.load_model")def test_chat_completion(    load_model, tokenizer, setup_tokenizer, llama_tokenizer, llama_version):    from chat_completion import main    setup_tokenizer(tokenizer)    kwargs = {        "prompt_file": (CHAT_COMPLETION_DIR / "chats.json").as_posix(),    }    main(llama_version, **kwargs)    dialogs = read_dialogs_from_file(kwargs["prompt_file"])    format_tokens = (        _format_tokens_llama2        if llama_version == "meta-llama/Llama-2-7b-hf"        else _format_tokens_llama3    )    REF_RESULT = format_tokens(dialogs, llama_tokenizer[llama_version])    assert all(        (            load_model.return_value.generate.mock_calls[0 * 4][2]["input_ids"].cpu()            == torch.tensor(REF_RESULT[0]).long()        ).tolist()    )    assert all(        (            load_model.return_value.generate.mock_calls[1 * 4][2]["input_ids"].cpu()            == torch.tensor(REF_RESULT[1]).long()        ).tolist()    )    assert all(        (            load_model.return_value.generate.mock_calls[2 * 4][2]["input_ids"].cpu()            == torch.tensor(REF_RESULT[2]).long()        ).tolist()    )    assert all(        (            load_model.return_value.generate.mock_calls[3 * 4][2]["input_ids"].cpu()            == torch.tensor(REF_RESULT[3]).long()        ).tolist()    )    assert all(        (            load_model.return_value.generate.mock_calls[4 * 4][2]["input_ids"].cpu()            == torch.tensor(REF_RESULT[4]).long()        ).tolist()    )
 |