| 12345678910111213141516171819202122232425262728293031323334353637 | 
							- # Copyright (c) Meta Platforms, Inc. and affiliates.
 
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
- from unittest.mock import patch
 
- @patch('llama_recipes.finetuning.train')
 
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
 
- @patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')
 
- @patch('llama_recipes.finetuning.optim.AdamW')
 
- @patch('llama_recipes.finetuning.StepLR')
 
- def test_custom_dataset(step_lr, optimizer, tokenizer, get_model, train, mocker):
 
-     from llama_recipes.finetuning import main
 
-         
 
-     tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
 
-     
 
-     
 
-     kwargs = {
 
-         "batch_size_training": 1,
 
-         "use_peft": False,
 
-         "dataset": "samsum_dataset",
 
-         }
 
-     
 
-     main(**kwargs)
 
-     
 
-     assert train.call_count == 1
 
-     
 
-     args, kwargs = train.call_args
 
-     train_dataloader = args[1]
 
-     eval_dataloader = args[2]
 
-     
 
-     VAL_SAMPLES = 818
 
-     TRAIN_SAMPLES = 14732
 
-     CONCAT_SIZE = 2048
 
-     assert len(train_dataloader) == TRAIN_SAMPLES // CONCAT_SIZE
 
-     assert len(eval_dataloader) == VAL_SAMPLES
 
-     
 
 
  |