| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 | # Copyright (c) Meta Platforms, Inc. and affiliates.# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.from pytest import approxfrom unittest.mock import patchfrom torch.nn import Linearfrom torch.optim import AdamWfrom torch.utils.data.dataloader import DataLoaderfrom llama_recipes.finetuning import main@patch('llama_recipes.finetuning.train')@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')@patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')@patch('llama_recipes.finetuning.get_preprocessed_dataset')@patch('llama_recipes.finetuning.optim.AdamW')@patch('llama_recipes.finetuning.StepLR')def test_finetuning_no_validation(step_lr, optimizer, get_dataset, tokenizer, get_model, train):    kwargs = {"run_validation": False}        get_dataset.return_value = [1]        main(**kwargs)        assert train.call_count == 1        args, kwargs = train.call_args    train_dataloader = args[1]    eval_dataloader = args[2]        assert isinstance(train_dataloader, DataLoader)    assert eval_dataloader is None        assert get_model.return_value.to.call_args.args[0] == "cuda"        @patch('llama_recipes.finetuning.train')@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')@patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')@patch('llama_recipes.finetuning.get_preprocessed_dataset')@patch('llama_recipes.finetuning.optim.AdamW')@patch('llama_recipes.finetuning.StepLR')def test_finetuning_with_validation(step_lr, optimizer, get_dataset, tokenizer, get_model, train):    kwargs = {"run_validation": True}    get_dataset.return_value = [1]        main(**kwargs)        assert train.call_count == 1        args, kwargs = train.call_args    train_dataloader = args[1]    eval_dataloader = args[2]    assert isinstance(train_dataloader, DataLoader)    assert isinstance(eval_dataloader, DataLoader)        assert get_model.return_value.to.call_args.args[0] == "cuda"        @patch('llama_recipes.finetuning.train')@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')@patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')@patch('llama_recipes.finetuning.get_preprocessed_dataset')@patch('llama_recipes.finetuning.generate_peft_config')@patch('llama_recipes.finetuning.get_peft_model')@patch('llama_recipes.finetuning.optim.AdamW')@patch('llama_recipes.finetuning.StepLR')def test_finetuning_peft(step_lr, optimizer, get_peft_model, gen_peft_config, get_dataset, tokenizer, get_model, train):    kwargs = {"use_peft": True}        get_dataset.return_value = [1]        main(**kwargs)        assert get_peft_model.return_value.to.call_args.args[0] == "cuda"    assert get_peft_model.return_value.print_trainable_parameters.call_count == 1        @patch('llama_recipes.finetuning.train')@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')@patch('llama_recipes.finetuning.LlamaTokenizer.from_pretrained')@patch('llama_recipes.finetuning.get_preprocessed_dataset')@patch('llama_recipes.finetuning.get_peft_model')@patch('llama_recipes.finetuning.StepLR')def test_finetuning_weight_decay(step_lr, get_peft_model, get_dataset, tokenizer, get_model, train, mocker):    kwargs = {"weight_decay": 0.01}        get_dataset.return_value = [1]        model = mocker.MagicMock(name="model")    model.parameters.return_value = Linear(1,1).parameters()    get_peft_model.return_value = model     get_peft_model.return_value.print_trainable_parameters=lambda:None    main(**kwargs)        assert train.call_count == 1        args, kwargs = train.call_args    optimizer = args[4]        print(optimizer.state_dict())        assert isinstance(optimizer, AdamW)    assert optimizer.state_dict()["param_groups"][0]["weight_decay"] == approx(0.01)    
 |