| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 | # Copyright (c) Meta Platforms, Inc. and affiliates.# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.# from accelerate import init_empty_weights, load_checkpoint_and_dispatchimport fireimport osimport sysimport torchfrom transformers import LlamaTokenizerfrom llama_recipes.inference.chat_utils import read_dialogs_from_file, format_tokensfrom llama_recipes.inference.model_utils import load_model, load_peft_modelfrom llama_recipes.inference.safety_utils import get_safety_checkerdef main(    model_name,    peft_model: str=None,    quantization: bool=False,    max_new_tokens =256, #The maximum numbers of tokens to generate    min_new_tokens:int=0, #The minimum numbers of tokens to generate    prompt_file: str=None,    seed: int=42, #seed value for reproducibility    safety_score_threshold: float=0.5,    do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.    use_cache: bool=True,  #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.    top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.    temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.    top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.    repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.    length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.    enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api    enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs    enable_saleforce_content_safety: bool=True, # Enable safety check woth Saleforce safety flan t5    use_fast_kernels: bool = False, # Enable using SDPA from PyTorch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels    **kwargs):    if prompt_file is not None:        assert os.path.exists(            prompt_file        ), f"Provided Prompt file does not exist {prompt_file}"        dialogs= read_dialogs_from_file(prompt_file)    elif not sys.stdin.isatty():        dialogs = "\n".join(sys.stdin.readlines())    else:        print("No user prompt provided. Exiting.")        sys.exit(1)    print(f"User dialogs:\n{dialogs}")    print("\n==================================\n")    # Set the seeds for reproducibility    torch.cuda.manual_seed(seed)    torch.manual_seed(seed)    model = load_model(model_name, quantization)    if peft_model:        model = load_peft_model(model, peft_model)    if use_fast_kernels:        """        Setting 'use_fast_kernels' will enable        using of Flash Attention or Xformer memory-efficient kernels         based on the hardware being used. This would speed up inference when used for batched inputs.        """        try:            from optimum.bettertransformer import BetterTransformer            model = BetterTransformer.transform(model)           except ImportError:            print("Module 'optimum' not found. Please install 'optimum' it before proceeding.")    tokenizer = LlamaTokenizer.from_pretrained(model_name)    tokenizer.add_special_tokens(        {                     "pad_token": "<PAD>",        }    )        chats = format_tokens(dialogs, tokenizer)    with torch.no_grad():        for idx, chat in enumerate(chats):            safety_checker = get_safety_checker(enable_azure_content_safety,                                        enable_sensitive_topics,                                        enable_saleforce_content_safety,                                        )            # Safety check of the user prompt            safety_results = [check(dialogs[idx][0]["content"]) for check in safety_checker]            are_safe = all([r[1] for r in safety_results])            if are_safe:                print(f"User prompt deemed safe.")                print("User prompt:\n", dialogs[idx][0]["content"])                print("\n==================================\n")            else:                print("User prompt deemed unsafe.")                for method, is_safe, report in safety_results:                    if not is_safe:                        print(method)                        print(report)                print("Skipping the inferece as the prompt is not safe.")                sys.exit(1)  # Exit the program with an error status            tokens= torch.tensor(chat).long()            tokens= tokens.unsqueeze(0)            tokens= tokens.to("cuda:0")            outputs = model.generate(                input_ids=tokens,                max_new_tokens=max_new_tokens,                do_sample=do_sample,                top_p=top_p,                temperature=temperature,                use_cache=use_cache,                top_k=top_k,                repetition_penalty=repetition_penalty,                length_penalty=length_penalty,                **kwargs            )            output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)            # Safety check of the model output            safety_results = [check(output_text) for check in safety_checker]            are_safe = all([r[1] for r in safety_results])            if are_safe:                print("User input and model output deemed safe.")                print(f"Model output:\n{output_text}")                print("\n==================================\n")            else:                print("Model output deemed unsafe.")                for method, is_safe, report in safety_results:                    if not is_safe:                        print(method)                        print(report)if __name__ == "__main__":    fire.Fire(main)
 |