| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 | 
							- # Copyright (c) Meta Platforms, Inc. and affiliates.
 
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
- import pytest
 
- from unittest.mock import patch
 
- @pytest.mark.skip_missing_tokenizer()
 
- @patch('llama_recipes.finetuning.train')
 
- @patch('llama_recipes.finetuning.LlamaTokenizer')
 
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
 
- @patch('llama_recipes.finetuning.optim.AdamW')
 
- @patch('llama_recipes.finetuning.StepLR')
 
- def test_packing(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer):
 
-     from llama_recipes.finetuning import main
 
-     setup_tokenizer(tokenizer)
 
-     kwargs = {
 
-         "model_name": "meta-llama/Llama-2-7b-hf",
 
-         "batch_size_training": 8,
 
-         "val_batch_size": 1,
 
-         "use_peft": False,
 
-         "dataset": "samsum_dataset",
 
-         "batching_strategy": "packing",
 
-         }
 
-     main(**kwargs)
 
-     assert train.call_count == 1
 
-     args, kwargs = train.call_args
 
-     train_dataloader = args[1]
 
-     eval_dataloader = args[2]
 
-     assert len(train_dataloader) == 96
 
-     assert len(eval_dataloader) == 42
 
-     batch = next(iter(train_dataloader))
 
-     assert "labels" in batch.keys()
 
-     assert "input_ids" in batch.keys()
 
-     assert "attention_mask" in batch.keys()
 
-     assert batch["labels"][0].size(0) == 4096
 
-     assert batch["input_ids"][0].size(0) == 4096
 
-     assert batch["attention_mask"][0].size(0) == 4096
 
- @pytest.mark.skip_missing_tokenizer()
 
- @patch('llama_recipes.finetuning.train')
 
- @patch('llama_recipes.finetuning.LlamaTokenizer')
 
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
 
- @patch('llama_recipes.finetuning.optim.AdamW')
 
- @patch('llama_recipes.finetuning.StepLR')
 
- @patch('llama_recipes.finetuning.setup')
 
- @patch('llama_recipes.finetuning.FSDP')
 
- @patch('llama_recipes.finetuning.torch.distributed.is_initialized')
 
- @patch('llama_recipes.utils.config_utils.dist')
 
- def test_distributed_packing(dist, is_initialized, fsdp, setup, step_lr, optimizer, get_model, tokenizer, train, setup_tokenizer):
 
-     import os
 
-     from llama_recipes.finetuning import main
 
-     setup_tokenizer(tokenizer)
 
-     rank = 0
 
-     os.environ['LOCAL_RANK'] = f'{rank}'
 
-     os.environ['RANK'] = f'{rank}'
 
-     os.environ['WORLD_SIZE'] = '2'
 
-     os.environ['MASTER_ADDR'] = 'localhost'
 
-     os.environ['MASTER_PORT'] = '12345'
 
-     kwargs = {
 
-         "model_name": "meta-llama/Llama-2-7b-hf",
 
-         "batch_size_training": 8,
 
-         "val_batch_size": 1,
 
-         "use_peft": False,
 
-         "dataset": "samsum_dataset",
 
-         "batching_strategy": "packing",
 
-         "enable_fsdp": True
 
-         }
 
-     is_initialized.return_value = True
 
-     dist.get_rank.return_value = rank
 
-     dist.get_world_size.return_value = 2
 
-     main(**kwargs)
 
-     assert train.call_count == 1
 
-     args, kwargs = train.call_args
 
-     train_dataloader = args[1]
 
-     eval_dataloader = args[2]
 
-     assert len(train_dataloader) == 96 //2
 
-     assert len(eval_dataloader) == 42 //2
 
 
  |