|
|
před 1 týdnem | |
|---|---|---|
| .. | ||
| README.md | před 1 týdnem | |
| main.tf | před 1 týdnem | |
| outputs.tf | před 1 týdnem | |
| terraform.tfvars.example | před 1 týdnem | |
| variables.tf | před 1 týdnem | |
Deploy Llama 4 Scout models using Google Cloud Vertex AI managed service.
This Terraform configuration sets up a basic example deployment, demonstrating how to deploy/serve foundation models using GCP Vertex. Vertex AI provides fully managed ML services with Model-as-a-Service (MaaS) endpoints.
This example shows how to use basic services such as:
In our architecture patterns for private cloud guide we outline advanced patterns for cloud deployment that you may choose to implement in a more complete deployment. This includes:
gcloud auth application-default loginConfigure GCP authentication:
gcloud auth login
gcloud config set project YOUR_PROJECT_ID
Edit terraform.tfvars with your project ID.
Create configuration:
cd terraform/gcp-vertex-ai-default
cp terraform.tfvars.example terraform.tfvars
Deploy:
terraform init
terraform plan
terraform apply
from google.cloud import aiplatform
aiplatform.init(
project="your-project-id",
location="us-central1"
)
# Model ID: meta/llama-4-scout-17b-16e-instruct-maas