Connor Treacy d03fda145d Add files via upload hace 1 semana
..
README.md d03fda145d Add files via upload hace 1 semana
main.tf d03fda145d Add files via upload hace 1 semana
outputs.tf d03fda145d Add files via upload hace 1 semana
terraform.tfvars.example d03fda145d Add files via upload hace 1 semana
variables.tf d03fda145d Add files via upload hace 1 semana

README.md

GCP Vertex AI deployment

Deploy Llama 4 Scout models using Google Cloud Vertex AI managed service.

Overview

This Terraform configuration sets up a basic example deployment, demonstrating how to deploy/serve foundation models using GCP Vertex. Vertex AI provides fully managed ML services with Model-as-a-Service (MaaS) endpoints.

This example shows how to use basic services such as:

  • IAM roles for permissions management
  • Service accounts for fine-grained access control
  • Creating Vertex endpoints for model serving

In our architecture patterns for private cloud guide we outline advanced patterns for cloud deployment that you may choose to implement in a more complete deployment. This includes:

  • Deployment into multiple regions or clouds
  • Managed keys/secrets services
  • Comprehensive logging systems for auditing and compliance
  • Backup and recovery systems

Getting started

Prerequisites

  • GCP project with billing account enabled (required for API activation)
  • Terraform installed
  • Gcloud CLI configured
  • Application Default Credentials: gcloud auth application-default login

Deploy

  1. Configure GCP authentication:

    gcloud auth login
    gcloud config set project YOUR_PROJECT_ID
    
  2. Edit terraform.tfvars with your project ID.

  3. Create configuration:

    cd terraform/gcp-vertex-ai-default
    cp terraform.tfvars.example terraform.tfvars
    
  4. Deploy:

    terraform init
    terraform plan
    terraform apply
    

Usage

  1. Accept Llama Community License in Vertex AI Model Garden
  2. Use Llama 4 Scout via MaaS API:
from google.cloud import aiplatform

aiplatform.init(
    project="your-project-id",
    location="us-central1"
)

# Model ID: meta/llama-4-scout-17b-16e-instruct-maas

Next steps