| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 | # Copyright (c) Meta Platforms, Inc. and affiliates.# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.# from accelerate import init_empty_weights, load_checkpoint_and_dispatchimport fireimport osimport sysimport timeimport torchfrom transformers import LlamaTokenizerfrom llama_recipes.inference.safety_utils import get_safety_checkerfrom llama_recipes.inference.model_utils import load_model, load_peft_modeldef main(    model_name,    peft_model: str=None,    quantization: bool=False,    max_new_tokens =100, #The maximum numbers of tokens to generate    prompt_file: str=None,    seed: int=42, #seed value for reproducibility    do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.    min_length: int=None, #The minimum length of the sequence to be generated, input prompt + min_new_tokens    use_cache: bool=True,  #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.    top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.    temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.    top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.    repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.    length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.     enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api    enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs    enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5    max_padding_length: int=None, # the max padding length to be used with tokenizer padding the prompts.    use_fast_kernels: bool = False, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels    **kwargs):    if prompt_file is not None:        assert os.path.exists(            prompt_file        ), f"Provided Prompt file does not exist {prompt_file}"        with open(prompt_file, "r") as f:            user_prompt = "\n".join(f.readlines())    elif not sys.stdin.isatty():        user_prompt = "\n".join(sys.stdin.readlines())    else:        print("No user prompt provided. Exiting.")        sys.exit(1)        # Set the seeds for reproducibility    torch.cuda.manual_seed(seed)    torch.manual_seed(seed)        model = load_model(model_name, quantization)    if peft_model:        model = load_peft_model(model, peft_model)    model.eval()        if use_fast_kernels:        """        Setting 'use_fast_kernels' will enable        using of Flash Attention or Xformer memory-efficient kernels         based on the hardware being used. This would speed up inference when used for batched inputs.        """        try:            from optimum.bettertransformer import BetterTransformer            model = BetterTransformer.transform(model)            except ImportError:            print("Module 'optimum' not found. Please install 'optimum' it before proceeding.")    tokenizer = LlamaTokenizer.from_pretrained(model_name)    tokenizer.pad_token = tokenizer.eos_token        safety_checker = get_safety_checker(enable_azure_content_safety,                                        enable_sensitive_topics,                                        enable_salesforce_content_safety,                                        )    # Safety check of the user prompt    safety_results = [check(user_prompt) for check in safety_checker]    are_safe = all([r[1] for r in safety_results])    if are_safe:        print("User prompt deemed safe.")        print(f"User prompt:\n{user_prompt}")    else:        print("User prompt deemed unsafe.")        for method, is_safe, report in safety_results:            if not is_safe:                print(method)                print(report)        print("Skipping the inference as the prompt is not safe.")        sys.exit(1)  # Exit the program with an error status            batch = tokenizer(user_prompt, padding='max_length', truncation=True, max_length=max_padding_length, return_tensors="pt")    batch = {k: v.to("cuda") for k, v in batch.items()}    start = time.perf_counter()    with torch.no_grad():        outputs = model.generate(            **batch,            max_new_tokens=max_new_tokens,            do_sample=do_sample,            top_p=top_p,            temperature=temperature,            min_length=min_length,            use_cache=use_cache,            top_k=top_k,            repetition_penalty=repetition_penalty,            length_penalty=length_penalty,            **kwargs         )    e2e_inference_time = (time.perf_counter()-start)*1000    print(f"the inference time is {e2e_inference_time} ms")    output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)        # Safety check of the model output    safety_results = [check(output_text) for check in safety_checker]    are_safe = all([r[1] for r in safety_results])    if are_safe:        print("User input and model output deemed safe.")        print(f"Model output:\n{output_text}")    else:        print("Model output deemed unsafe.")        for method, is_safe, report in safety_results:            if not is_safe:                print(method)                print(report)                if __name__ == "__main__":    fire.Fire(main)
 |