| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 | import jsonimport osimport reimport matplotlib.pyplot as pltimport numpy as npfrom collections import defaultdictdef extract_info_from_filename(filename):    pattern = r'(?P<backend>[^-]+)-(?P<qps>\d+\.\d+)qps-(?P<model>.+)-(?P<date>\d{8}-\d{6})\.json'    match = re.match(pattern, filename)    if match:        return {            'qps': float(match.group('qps')),            'model': match.group('model')        }    return Nonedef read_json_files(directory):    data_tpot = defaultdict(list)    data_ttft = defaultdict(list)    for filename in os.listdir(directory):        if filename.endswith('.json'):            filepath = os.path.join(directory, filename)            file_info = extract_info_from_filename(filename)            if file_info:                with open(filepath, 'r') as file:                    json_data = json.load(file)                    median_tpot = json_data.get('median_tpot_ms')                    std_tpot = json_data.get('std_tpot_ms')                    median_ttft = json_data.get('median_ttft_ms')                    std_ttft = json_data.get('std_ttft_ms')                    if all(v is not None for v in [median_tpot, std_tpot, median_ttft, std_ttft]):                        data_tpot[file_info['model']].append((file_info['qps'], median_tpot, std_tpot))                        data_ttft[file_info['model']].append((file_info['qps'], median_ttft, std_ttft))    return {        'tpot': {model: sorted(points) for model, points in data_tpot.items()},        'ttft': {model: sorted(points) for model, points in data_ttft.items()}    }def create_chart(data, metric, filename):    plt.figure(figsize=(12, 6))        colors = plt.cm.rainbow(np.linspace(0, 1, len(data)))    for (model, points), color in zip(data.items(), colors):        qps_values, median_values, std_values = zip(*points)        plt.errorbar(qps_values, median_values, yerr=std_values, fmt='o-', capsize=5, capthick=2, label=model, color=color)        plt.fill_between(qps_values,                          np.array(median_values) - np.array(std_values),                         np.array(median_values) + np.array(std_values),                         alpha=0.2, color=color)    plt.xlabel('QPS (Queries Per Second)')    plt.ylabel(f'Median {metric.upper()} (ms)')    plt.title(f'Median {metric.upper()} vs QPS with Standard Deviation')    plt.grid(True)    plt.legend(title='Model', bbox_to_anchor=(1.05, 1), loc='upper left')    plt.tight_layout()    plt.savefig(filename, dpi=300, bbox_inches='tight')    plt.close()def main():    directory = './'    data = read_json_files(directory)    if data['tpot'] and data['ttft']:        create_chart(data['tpot'], 'tpot', 'tpot_vs_qps_chart.png')        create_chart(data['ttft'], 'ttft', 'ttft_vs_qps_chart.png')        print("Charts have been saved as 'tpot_vs_qps_chart.png' and 'ttft_vs_qps_chart.png'")    else:        print("No valid data found in the specified directory.")if __name__ == "__main__":    main()
 |