123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import pytest
- from unittest.mock import patch
- from transformers import LlamaTokenizer
- EXPECTED_RESULTS={
- "meta-llama/Llama-2-7b-hf":{
- "example_1": "[INST] Who made Berlin [/INST] dunno",
- "example_2": "[INST] Quiero preparar una pizza de pepperoni, puedes darme los pasos para hacerla? [/INST] Claro!",
- },
- "meta-llama/Meta-Llama-3.1-8B-Instruct":{
- "example_1": "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nWho made Berlin<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\ndunno<|eot_id|><|end_of_text|>",
- "example_2": "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow to start learning guitar and become a master at it?",
- },
- }
- def check_padded_entry(batch, tokenizer):
- seq_len = sum(batch["attention_mask"][0])
- assert seq_len < len(batch["attention_mask"][0])
- if tokenizer.vocab_size >= 128000:
- END_OF_TEXT_ID = 128009
- else:
- END_OF_TEXT_ID = tokenizer.eos_token_id
- assert batch["labels"][0][0] == -100
- assert batch["labels"][0][seq_len-1] == END_OF_TEXT_ID
- assert batch["labels"][0][-1] == -100
- assert batch["input_ids"][0][0] == tokenizer.bos_token_id
- assert batch["input_ids"][0][-1] == tokenizer.eos_token_id
- @pytest.mark.skip(reason="Flakey due to random dataset order @todo fix order")
- @pytest.mark.skip_missing_tokenizer
- @patch('llama_recipes.finetuning.train')
- @patch('llama_recipes.finetuning.AutoTokenizer')
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
- @patch('llama_recipes.finetuning.optim.AdamW')
- @patch('llama_recipes.finetuning.StepLR')
- def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer, llama_version):
- from llama_recipes.finetuning import main
- setup_tokenizer(tokenizer)
- skip_special_tokens = llama_version == "meta-llama/Llama-2-7b-hf"
- get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]
- kwargs = {
- "dataset": "custom_dataset",
- "model_name": llama_version,
- "custom_dataset.file": "recipes/quickstart/finetuning/datasets/custom_dataset.py",
- "custom_dataset.train_split": "validation",
- "batch_size_training": 2,
- "val_batch_size": 4,
- "use_peft": False,
- "batching_strategy": "padding"
- }
- main(**kwargs)
- assert train.call_count == 1
- args, kwargs = train.call_args
- train_dataloader = args[1]
- eval_dataloader = args[2]
- tokenizer = args[3]
- assert len(train_dataloader) == 1120
- assert len(eval_dataloader) == 1120 //2
- it = iter(eval_dataloader)
- batch = next(it)
- STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=skip_special_tokens)
- assert STRING.startswith(EXPECTED_RESULTS[llama_version]["example_1"])
- assert batch["input_ids"].size(0) == 4
- assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())
- check_padded_entry(batch, tokenizer)
- it = iter(train_dataloader)
- next(it)
- batch = next(it)
- STRING = tokenizer.decode(batch["input_ids"][0], skip_special_tokens=skip_special_tokens)
- assert STRING.startswith(EXPECTED_RESULTS[llama_version]["example_2"])
- assert batch["input_ids"].size(0) == 2
- assert set(("labels", "input_ids", "attention_mask")) == set(batch.keys())
- check_padded_entry(batch, tokenizer)
- @patch('llama_recipes.finetuning.train')
- @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
- @patch('llama_recipes.finetuning.AutoTokenizer.from_pretrained')
- @patch('llama_recipes.finetuning.optim.AdamW')
- @patch('llama_recipes.finetuning.StepLR')
- def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker, llama_version):
- from llama_recipes.finetuning import main
- tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
- get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]
- kwargs = {
- "dataset": "custom_dataset",
- "custom_dataset.file": "recipes/quickstart/finetuning/datasets/custom_dataset.py:get_unknown_dataset",
- "batch_size_training": 1,
- "use_peft": False,
- }
- with pytest.raises(AttributeError):
- main(**kwargs)
- @pytest.mark.skip_missing_tokenizer
- @patch('llama_recipes.finetuning.AutoTokenizer')
- def test_tokenize_dialog(tokenizer, monkeypatch, setup_tokenizer, llama_version):
- monkeypatch.syspath_prepend("recipes/quickstart/finetuning/datasets/")
- from custom_dataset import tokenize_dialog
- setup_tokenizer(tokenizer)
- tokenizer = tokenizer.from_pretrained()
- dialog = [
- {"role":"user", "content":"Who made Berlin?"},
- {"role":"assistant", "content":"dunno"},
- {"role":"user", "content":"And Rome?"},
- {"role":"assistant", "content":"Romans"},
- ]
- result = tokenize_dialog(dialog, tokenizer)
-
- if "Llama-2" in llama_version:
- assert result["labels"][:12] == [-100] * 12
- assert result["labels"][17:28] == [-100] * 11
- assert result["labels"].count(-100) == 11 + 12
- else:
- assert result["labels"][:38] == [-100] * 38
- assert result["labels"][43:54] == [-100] * 11
- assert result["labels"].count(-100) == 38 + 11
|