Kai Wu ff3df5b065 fix double bos for vision model 10 kuukautta sitten
..
NotebookLlama 716c23f9d0 Update Step-1 PDF-Pre-Processing-Logic.ipynb (#756) 1 vuosi sitten
RAG 017bee0356 Update hello_llama_cloud.ipynb (#754) 1 vuosi sitten
Running_Llama3_Anywhere 0f632b3e3d Fix version number in Python example 1 vuosi sitten
agents b579bd04a8 colab links fix 11 kuukautta sitten
finetuning ff3df5b065 fix double bos for vision model 10 kuukautta sitten
inference ff3df5b065 fix double bos for vision model 10 kuukautta sitten
Getting_to_know_Llama.ipynb ee34e1be19 typo fix lama -> llama line 127 1 vuosi sitten
Prompt_Engineering_with_Llama_3.ipynb 4efe439084 Update Prompt_Engineering_with_Llama_3.ipynb 11 kuukautta sitten
README.md e814d7d672 Update README.md 1 vuosi sitten
build_with_Llama_3_2.ipynb 7fa0165741 moved images from quickstart to doc/img 10 kuukautta sitten

README.md

Llama-Recipes Quickstart

If you are new to developing with Meta Llama models, this is where you should start. This folder contains introductory-level notebooks across different techniques relating to Meta Llama.

  • The Build_with_Llama 3.2 notebook showcases a comprehensive walkthrough of the new capabilities of Llama 3.2 models, including multimodal use cases, function/tool calling, Llama Stack, and Llama on edge.
  • The Running_Llama_Anywhere notebooks demonstrate how to run Llama inference across Linux, Mac and Windows platforms using the appropriate tooling.
  • The Prompt_Engineering_with_Llama notebook showcases the various ways to elicit appropriate outputs from Llama. Take this notebook for a spin to get a feel for how Llama responds to different inputs and generation parameters.
  • The inference folder contains scripts to deploy Llama for inference on server and mobile. See also 3p_integrations/vllm and 3p_integrations/tgi for hosting Llama on open-source model servers.
  • The RAG folder contains a simple Retrieval-Augmented Generation application using Llama.
  • The finetuning folder contains resources to help you finetune Llama on your custom datasets, for both single- and multi-GPU setups. The scripts use the native llama-recipes finetuning code found in finetuning.py which supports these features: