123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- import logging
- import os
- import argparse
- from raft_utils import generate_questions, add_chunk_to_dataset
- from format import DatasetConverter, datasetFormats, outputDatasetTypes
- from config import load_config
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
- def main(api_config):
- ds = None
- try:
- logging.info("Starting to generate question pair.")
- # Generate questions as list for each chunk
- chunk_questions_zip = generate_questions(api_config)
- if not chunk_questions_zip:
- logging.warning("No questions generated from text. Please check the api_config or model configuration.")
- return
- logging.info(f"Successfully generated {sum([len(q) for c,q in chunk_questions_zip])} question/answer pairs.")
- ds = add_chunk_to_dataset(chunk_questions_zip,api_config)
- ds.save_to_disk(args.output)
- logging.info(f"Data successfully written to {api_config['output']}. Process completed.")
- formatter = DatasetConverter()
- # Extract format specific params
- format_params = {}
- formatter.convert(ds=ds, format=args.output_format, output_path=args.output+"raft", output_type=args.output_type, params=format_params)
- except Exception as e:
- logging.error(f"An unexpected error occurred during the process: {e}",exc_info=True)
- def parse_arguments():
- # Define command line arguments for the script
- parser = argparse.ArgumentParser(
- description="Generate RAFT question/answer/context pairs from documentation."
- )
- parser.add_argument(
- "-t", "--questions_per_chunk",
- type=int,
- default=4,
- help="Specify the number of question pairs to generate per chunk."
- )
- parser.add_argument(
- "-m", "--model",
- default="meta-llama/Meta-Llama-3-70B-Instruct",
- help="Select the model to use for generation."
- )
- parser.add_argument(
- "-c", "--config_path",
- default="./raft.yaml",
- help="Set the configuration file path that has system prompt along with language, dataset path and number of questions."
- )
- parser.add_argument(
- "-u", "--endpoint_url",
- default="http://localhost:8001/v1",
- type=str,
- help="LLM API url for generating question/answer pairs."
- )
- parser.add_argument(
- "-k", "--api_key",
- default="EMPTY",
- type=str,
- help="LLM API key for generating question/answer pairs."
- )
- parser.add_argument("--chunk_size", type=int, default=1000, help="The size of each chunk in number of tokens")
- parser.add_argument("-o","--output", type=str, default="./output/", help="The path at which to save the dataset")
- parser.add_argument("--output-format", type=str, default="hf", help="Format to convert the dataset to. Defaults to hf.", choices=datasetFormats)
- parser.add_argument("--output-type", type=str, default="jsonl", help="Type to export the dataset to. Defaults to jsonl.", choices=outputDatasetTypes)
- return parser.parse_args()
- if __name__ == "__main__":
- logging.info("Initializing the process and loading configuration...")
- args = parse_arguments()
- api_config = load_config(args.config_path)
- api_config["questions_per_chunk"] = args.questions_per_chunk
- api_config["model"] = args.model
- api_config["chunk_size"] = args.chunk_size
- api_config["endpoint_url"] = args.endpoint_url
- api_config["output"] = args.output
- api_config["api_key"] = args.api_key
- # if OPENAI_API_KEY is defined in the system environment, use it as the API key
- if os.environ.get('API_KEY') is not None:
- api_config["api_key"] = os.environ["API_KEY"]
- logging.info(f"Configuration loaded. Generating {args.questions_per_chunk} question per chunk using model '{args.model}'.")
- logging.info(f"Chunk size: {args.chunk_size}.")
- logging.info(f"num_distract_docs: {api_config['num_distract_docs']}, refusal_probability: {api_config['refusal_probability']}")
- logging.info(f"Will use endpoint_url: {args.endpoint_url}.")
- logging.info(f"Output will be written to {args.output}.")
- main(api_config)
|