12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the GNU General Public License version 3.
- from llama_recipes.utils.config_utils import update_config
- from llama_recipes.configs import quantization_config as QUANT_CONFIG
- from peft import PeftModel
- from transformers import AutoModelForCausalLM, LlamaForCausalLM, LlamaConfig
- from warnings import warn
- # Function to load the main model for text generation
- def load_model(model_name, quantization, use_fast_kernels, **kwargs):
- if type(quantization) == type(True):
- warn("Quantization (--quantization) is a boolean, please specify quantization as '4bit' or '8bit'. Defaulting to '8bit' but this might change in the future.", FutureWarning)
- quantization = "8bit"
- bnb_config = None
- if quantization:
- quant_config = QUANT_CONFIG()
- update_config(quant_config, **kwargs)
- bnb_config = quant_config.create_bnb_config(quantization)
- print(f"use_fast_kernels{use_fast_kernels}")
- kwargs = {}
- if bnb_config:
- kwargs["quantization_config"]=bnb_config
- kwargs["device_map"]="auto"
- kwargs["low_cpu_mem_usage"]=True
- kwargs["attn_implementation"]="sdpa" if use_fast_kernels else None
- model = AutoModelForCausalLM.from_pretrained(
- model_name,
- return_dict=True,
- **kwargs,
- )
- return model
- # Function to load the PeftModel for performance optimization
- def load_peft_model(model, peft_model):
- peft_model = PeftModel.from_pretrained(model, peft_model)
- return peft_model
- # Loading the model from config to load FSDP checkpoints into that
- def load_llama_from_config(config_path):
- model_config = LlamaConfig.from_pretrained(config_path)
- model = LlamaForCausalLM(config=model_config)
- return model
-
-
|