1234567891011121314151617181920212223242526272829303132333435363738394041424344 |
- import torch
- from transformers import AutoTokenizer, AutoModel
- from llama_index.core.base.embeddings.base import BaseEmbedding
- device = "cuda" if torch.cuda.is_available() else "cpu"
- # Load tokenizer and model
- model_id = "jinaai/jina-embeddings-v2-base-en" #"jinaai/jina-embeddings-v3"
- tokenizer = AutoTokenizer.from_pretrained(model_id)
- model = AutoModel.from_pretrained(model_id, trust_remote_code=True).to(device)
- # Define function to generate embeddings
- def get_embedding(text):
- inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
- with torch.no_grad():
- outputs = model(**inputs)
- return outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy() #.to(torch.float32)
- class LocalJinaEmbedding(BaseEmbedding):
- def __init__(self):
- super().__init__()
- def _get_text_embedding(self, text):
- return get_embedding(text).tolist() # Ensure compatibility with LlamaIndex
- def _get_query_embedding(self, query):
- return get_embedding(query).tolist()
-
- async def _aget_query_embedding(self, query: str) -> list:
- return get_embedding(query).tolist()
- def test(): #this did not produce reasonable results for some reason
- #!pip install llama-index-embeddings-huggingface
- from llama_index.embeddings.huggingface import HuggingFaceEmbedding
- embed_model = HuggingFaceEmbedding(model_name=model_id)
- if __name__=="__main__":
- emb = get_embedding("hi there")
- print(emb.shape)
|