Chester Hu c4ea158e61 Update README.md 2 týždňov pred
..
README.md c4ea158e61 Update README.md 2 týždňov pred
requirements.txt e7a84512c2 E2E use-case: research paper analyzer with Llama 4 3 týždňov pred
research_analyzer.py 9c289052b7 Rename research-analyzer.py to research_analyzer.py 2 týždňov pred

README.md

Research Paper analyzer with Llama4 Maverick

This leverages Llama 4 Maverick model to retrieve the references of an arXiv paper and ingest all their content for question-answering without using any RAG to store these information.

Features

Leverage Long Context Length

Model Meta Llama4 Maverick Meta Llama4 Scout OpenAI GPT-4.5 Claude Sonnet 3.7
Context Window 1M tokens 10M tokens 128K tokens 1K tokens

Because of the long context length, the analyzer can process all the reference paper content at once, so you can ask questions about the paper without worrying about the context length.

Getting Started

  1. Install dependencies:
pip install -r requirements.txt
  1. Run the application:
python research_analyzer.py
  1. Open the gradio interface on localhost in the browser.

  2. Provide a paper url such as https://arxiv.org/abs/2305.11135

  3. Press "Ingest", wait for paper to be processed and ask questions about it