123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- import os
- import sys
- from typing import List, Union
- import fire
- import torch
- import transformers
- from datasets import load_dataset
- import os.path as osp
- from tqdm import tqdm
- # Unused imports removed
- from utils import fsdp_auto_wrap_policy
- from transformers import (
- LlamaForCausalLM,
- LlamaTokenizer,
- AutoModelForCausalLM,
- AutoModelForSeq2SeqLM,
- AutoTokenizer,
- default_data_collator,
- BitsAndBytesConfig
- )
- import torch.distributed as dist
- # Unused imports removed
- from utils.train_utils import (
- set_tokenizer_params,
- train,
- evaluation,
- freeze_transformer_layers,
- check_frozen_layers_peft_model,
- setup,
- setup_environ_flags,
- cleanup,
- clear_gpu_cache,
- get_parameter_dtypes,
- print_model_size,
- get_policies
- )
- from utils.dataset_utils import get_preprocessed_dataset
- from utils.config_utils import (
- update_config,
- generate_peft_config,
- generate_dataset_config,
- )
- from peft import get_peft_model, TaskType, prepare_model_for_int8_training
- import configs
- from torch.distributed.fsdp import (
- FullyShardedDataParallel as FSDP,
- MixedPrecision,
- )
- from torch.utils.data import DistributedSampler
- import policies
- from policies import AnyPrecisionAdamW
- from configs import fsdp_config, train_config
- import torch.optim as optim
- from torch.optim.lr_scheduler import StepLR
- from pkg_resources import packaging
- import torch
- import torch.cuda.nccl as nccl
- import torch.distributed as dist
- from transformers.models.llama.modeling_llama import LlamaDecoderLayer
- def main(**kwargs):
- # Update the configuration for the training and sharding process
- update_config((train_config, fsdp_config), **kwargs)
- # Set the seeds for reproducibility
- torch.cuda.manual_seed(train_config.seed)
- torch.manual_seed(train_config.seed)
- if train_config.enable_fsdp:
- setup()
- # torchrun specific
- local_rank = int(os.environ["LOCAL_RANK"])
- rank = int(os.environ["RANK"])
- world_size = int(os.environ["WORLD_SIZE"])
- if torch.distributed.is_initialized():
- torch.cuda.set_device(rank)
- setup_environ_flags(rank)
-
- # Calculate gradient accumulation steps
- gradient_accumulation_steps = train_config.batch_size_training // train_config.micro_batch_size
-
- # Load the pre-trained model and setup its configuration
- model = LlamaForCausalLM.from_pretrained(
- train_config.model_name,
- load_in_8bit=True if train_config.quantization else None,
- device_map="auto" if train_config.quantization else None,
- )
-
- print_model_size(model, train_config, rank if train_config.enable_fsdp else 0)
-
- # Prepare the model for int8 training if quantization is enabled
- if train_config.quantization:
- model = prepare_model_for_int8_training(model)
-
- # Convert the model to bfloat16 if fsdp and pure_bf16 is enabled
- if train_config.enable_fsdp and fsdp_config.pure_bf16:
- model.to(torch.bfloat16)
- # Load the tokenizer and add special tokens
- tokenizer = LlamaTokenizer.from_pretrained(train_config.model_name)
- tokenizer.add_special_tokens(
- {
-
- "pad_token": "<PAD>",
- }
- )
- if train_config.use_peft:
- peft_config = generate_peft_config(train_config, kwargs)
- model = get_peft_model(model, peft_config)
- model.print_trainable_parameters()
-
- #setting up FSDP if enable_fsdp is enabled
- if train_config.enable_fsdp:
- if not train_config.use_peft and train_config.freeze_layers:
-
- freeze_transformer_layers(train_config.num_freeze_layers)
- mixed_precision_policy, wrapping_policy = get_policies(fsdp_config, rank)
- my_auto_wrapping_policy = fsdp_auto_wrap_policy(model, LlamaDecoderLayer)
- if fsdp_config.optimizer_overlap:
- try:
- from torch.distributed.optim import _apply_optimizer_in_backward
- except ImportError:
- # Handle the ImportError here, such as providing an alternative implementation or an error message.
- print("The required module 'torch.distributed.optim' is not available.")
- model = FSDP(
- model,
- auto_wrap_policy= my_auto_wrapping_policy if train_config.use_peft else wrapping_policy,
- mixed_precision=mixed_precision_policy if not fsdp_config.pure_bf16 else None,
- sharding_strategy=fsdp_config.sharding_strategy,
- device_id=torch.cuda.current_device(),
- limit_all_gathers=True,
- use_orig_params=True,
- )
-
- else:
- model = FSDP(
- model,
- auto_wrap_policy= my_auto_wrapping_policy if train_config.use_peft else wrapping_policy,
- mixed_precision=mixed_precision_policy if not fsdp_config.pure_bf16 else None,
- sharding_strategy=fsdp_config.sharding_strategy,
- device_id=torch.cuda.current_device(),
- limit_all_gathers=True,
- )
-
- if fsdp_config.fsdp_activation_checkpointing:
- policies.apply_fsdp_checkpointing(model)
- elif not train_config.quantization and not train_config.enable_fsdp:
- model.to("cuda")
- dataset_config = generate_dataset_config(train_config, kwargs)
-
- # Load and preprocess the dataset for training and validation
- dataset_train = get_preprocessed_dataset(
- tokenizer,
- dataset_config,
- split="train",
- )
-
- if not train_config.enable_fsdp or rank == 0:
- print(f"--> Training Set Length = {len(dataset_train)}")
- dataset_val = get_preprocessed_dataset(
- tokenizer,
- dataset_config,
- split="test",
- )
- if not train_config.enable_fsdp or rank == 0:
- print(f"--> Validation Set Length = {len(dataset_val)}")
- train_sampler = None
- val_sampler = None
- if train_config.enable_fsdp:
- train_sampler = DistributedSampler(
- dataset_train,
- rank=dist.get_rank(),
- num_replicas=dist.get_world_size(),
- shuffle=True,
- )
- if train_config.run_validation:
- val_sampler = DistributedSampler(
- dataset_val,
- rank=dist.get_rank(),
- num_replicas=dist.get_world_size(),
- )
-
- # Create DataLoaders for the training and validation dataset
- train_dataloader = torch.utils.data.DataLoader(
- dataset_train,
- batch_size=train_config.batch_size_training,
- num_workers=train_config.num_workers_dataloader,
- pin_memory=True,
- sampler=train_sampler if train_sampler else None,
- drop_last=True,
- collate_fn=default_data_collator,
- )
- if train_config.run_validation:
- eval_dataloader = torch.utils.data.DataLoader(
- dataset_val,
- batch_size=train_config.val_batch_size,
- num_workers=train_config.num_workers_dataloader,
- pin_memory=True,
- sampler=val_sampler if val_sampler else None,
- drop_last=True,
- collate_fn=default_data_collator,
- )
-
- #Initialize the optimizer and learning rate scheduler
- if not fsdp_config.optimizer_overlap:
- if fsdp_config.pure_bf16 and fsdp_config.optimizer == "anyprecision":
- optimizer = AnyPrecisionAdamW(
- model.parameters(),
- lr=train_config.lr,
- momentum_dtype=torch.bfloat16,
- variance_dtype=torch.bfloat16,
- use_kahan_summation=False,
- )
- else:
- optimizer = optim.AdamW(
- model.parameters(),
- lr=train_config.lr,
- weight_decay=0.0,
- )
- if fsdp_config.optimizer_overlap:
- print(f"setting up optimizer overlap")
- print("===============================")
- optim_kwargs = {"lr": train_config.lr}
- _apply_optimizer_in_backward(
- optimizer_class=optim.AdamW,
- params=model.parameters(),
- optimizer_kwargs=optim_kwargs,
- register_hook=False,
- )
- for p in model.parameters():
- assert hasattr(p, "_in_backward_optimizers")
- optim_kwargs = {"lr": train_config.lr, "weight_decay":0.0}
- optimizer = optim.AdamW(
- model.parameters(),
- **optim_kwargs
- )
-
-
- scheduler = StepLR(optimizer, step_size=1, gamma=train_config.gamma)
- # Start the training process
- results = train(
- model,
- train_dataloader,
- eval_dataloader,
- tokenizer,
- optimizer,
- scheduler,
- gradient_accumulation_steps,
- train_config,
- fsdp_config if train_config.enable_fsdp else None,
- local_rank if train_config.enable_fsdp else None,
- rank if train_config.enable_fsdp else None,
- )
- if not train_config.enable_fsdp or rank==0:
- [print(f'Key: {k}, Value: {v}') for k, v in results.items()]
- if __name__ == "__main__":
- fire.Fire(main)
|