12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
- from dataclasses import dataclass
- @dataclass
- class train_config:
- model_name: str="PATH/to/Model"
- tokenizer_name: str=None
- enable_fsdp: bool=False # shards model parameters, optimizer states and gradients across DDP ranks
- low_cpu_fsdp: bool=False # saves cpu memory by loading pretrained model on rank0 only
- run_validation: bool=True
- batch_size_training: int=4
- batching_strategy: str="packing" #alternative: padding
- context_length: int=4096
- gradient_accumulation_steps: int=1
- gradient_clipping: bool = False
- gradient_clipping_threshold: float = 1.0
- num_epochs: int=3
- max_train_step: int=0
- max_eval_step: int=0
- num_workers_dataloader: int=1
- lr: float=1e-4
- weight_decay: float=0.0
- gamma: float= 0.85 # multiplicatively decay the learning rate by gamma after each epoch
- seed: int=42
- use_fp16: bool=False
- mixed_precision: bool=True
- val_batch_size: int=1
- dataset = "samsum_dataset"
- peft_method: str = "lora" # None, llama_adapter (Caution: llama_adapter is currently not supported with FSDP)
- use_peft: bool=False # use parameter efficient fine tuning
- from_peft_checkpoint: str="" # if not empty and use_peft=True, will load the peft checkpoint and resume the fine-tuning on that checkpoint
- output_dir: str = "PATH/to/save/PEFT/model"
- freeze_layers: bool = False
- num_freeze_layers: int = 1
- freeze_LLM_only: bool = False # Freeze self-attention layers in the language_model. Vision model, multi_modal_projector, cross-attention will be fine-tuned
- quantization: str = None
- one_gpu: bool = False
- save_model: bool = True
- dist_checkpoint_root_folder: str="PATH/to/save/FSDP/model" # will be used if using FSDP
- dist_checkpoint_folder: str="fine-tuned" # will be used if using FSDP
- save_optimizer: bool=False # will be used if using FSDP
- use_fast_kernels: bool = False # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels
- use_wandb: bool = False # Enable wandb for experient tracking
- save_metrics: bool = False # saves training metrics to a json file for later plotting
- flop_counter: bool = False # Enable flop counter to measure model throughput, can not be used with pytorch profiler at the same time.
- flop_counter_start: int = 3 # The step to start profiling, default is 3, which means after 3 steps of warmup stage, the profiler will start to count flops.
- use_profiler: bool = False # Enable pytorch profiler, can not be used with flop counter at the same time.
- profiler_dir: str = "PATH/to/save/profiler/results" # will be used if using profiler
|