12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 |
- import os
- import sys
- import argparse
- from PIL import Image as PIL_Image
- import torch
- from transformers import MllamaForConditionalGeneration, MllamaProcessor
- from accelerate import Accelerator
- accelerator = Accelerator()
- device = accelerator.device
- # Constants
- DEFAULT_MODEL = "meta-llama/Llama-3.2-11B-Vision-Instruct"
- def load_model_and_processor(model_name: str, hf_token: str):
- """
- Load the model and processor based on the 11B or 90B model.
- """
- model = MllamaForConditionalGeneration.from_pretrained(model_name, torch_dtype=torch.bfloat16,use_safetensors=True, device_map=device,
- token=hf_token)
- processor = MllamaProcessor.from_pretrained(model_name, token=hf_token,use_safetensors=True)
- model, processor=accelerator.prepare(model, processor)
- return model, processor
- def process_image(image_path: str) -> PIL_Image.Image:
- """
- Open and convert an image from the specified path.
- """
- if not os.path.exists(image_path):
- print(f"The image file '{image_path}' does not exist.")
- sys.exit(1)
- with open(image_path, "rb") as f:
- return PIL_Image.open(f).convert("RGB")
- def generate_text_from_image(model, processor, image, prompt_text: str, temperature: float, top_p: float):
- """
- Generate text from an image using the model and processor.
- """
- conversation = [
- {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}
- ]
- prompt = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
- inputs = processor(image, prompt, return_tensors="pt").to(device)
- output = model.generate(**inputs, temperature=temperature, top_p=top_p, max_new_tokens=512)
- return processor.decode(output[0])[len(prompt):]
- def main(image_path: str, prompt_text: str, temperature: float, top_p: float, model_name: str, hf_token: str):
- """
- Call all the functions.
- """
- model, processor = load_model_and_processor(model_name, hf_token)
- image = process_image(image_path)
- result = generate_text_from_image(model, processor, image, prompt_text, temperature, top_p)
- print("Generated Text: " + result)
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(description="Generate text from an image and prompt using the 3.2 MM Llama model.")
- parser.add_argument("--image_path", type=str, help="Path to the image file")
- parser.add_argument("--prompt_text", type=str, help="Prompt text to describe the image")
- parser.add_argument("--temperature", type=float, default=0.7, help="Temperature for generation (default: 0.7)")
- parser.add_argument("--top_p", type=float, default=0.9, help="Top p for generation (default: 0.9)")
- parser.add_argument("--model_name", type=str, default=DEFAULT_MODEL, help=f"Model name (default: '{DEFAULT_MODEL}')")
- parser.add_argument("--hf_token", type=str, required=True, help="Hugging Face token for authentication")
- args = parser.parse_args()
- main(args.image_path, args.prompt_text, args.temperature, args.top_p, args.model_name, args.hf_token)
|