|
|
@@ -298,7 +298,7 @@ Auch gibt es Mengen, die sowohl abgeschlossen als auch offen sind.
|
|
|
$\Rightarrow$ Widerspruch $\qed$
|
|
|
\end{beweis}
|
|
|
|
|
|
-\section{Stetigkeit}
|
|
|
+\section{Stetigkeit}\index{Stetigkeit|(}
|
|
|
\begin{definition} \xindex{stetig} \xindex{Homöomorphismus}
|
|
|
Seien $X, Y$ topologische Räume und $f:X \rightarrow Y$ eine Abbildung.
|
|
|
|
|
|
@@ -470,6 +470,7 @@ sodass $\pi$ stetig wird.
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% Mitschrieb vom 31.10.2013 %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
+\index{Stetigkeit|)}
|
|
|
\section{Zusammenhang}\index{Zusammenhang|(}
|
|
|
\begin{definition}\xindex{zusammenhängend}
|
|
|
Ein Raum $X$ heißt \textbf{zusammenhängend}, wenn es keine offenen
|
|
|
@@ -799,7 +800,7 @@ $\qed$
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% Mitschrieb vom 07.11.2013 %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
-\section{Wege und Knoten}
|
|
|
+\section{Wege und Knoten}\index{Knoten|(}
|
|
|
\begin{definition}\xindex{Weg}\xindex{Weg!geschlossener}\xindex{Weg!einfacher}
|
|
|
Sei $X$ ein topologischer Raum.
|
|
|
\begin{enumerate}[label=\alph*)]
|
|
|
@@ -1003,6 +1004,7 @@ $\qed$
|
|
|
\label{fig:reidemeister-zuege}
|
|
|
\caption{Ein 3-gefärber Kleeblattknoten}
|
|
|
\end{figure}
|
|
|
+\index{Knoten|)}
|
|
|
|
|
|
% Die Übungsaufgaben sollen ganz am Ende des Kapitels sein.
|
|
|
\input{Kapitel1-UB}
|