|
@@ -1,6 +1,7 @@
|
|
|
% Original Source: http://mitschriebwiki.nomeata.de/data/SS10/Ana2Bachelor.tex
|
|
|
\documentclass[a4paper,oneside,DIV15,BCOR12mm,chapterprefix=true,headings=twolinechapter]{scrbook}
|
|
|
-\usepackage{ana}
|
|
|
+\usepackage{mathe}
|
|
|
+\usepackage{saetze-schmoeger}
|
|
|
|
|
|
\lecturer{Dr. C. Schmoeger}
|
|
|
\semester{Sommersemester 2010}
|
|
@@ -1183,7 +1184,7 @@ $$ f'=
|
|
|
\frac{\partial f_p}{\partial x_1} & \cdots & \frac{\partial f_p}{\partial x_n} \\
|
|
|
\end{array}
|
|
|
\right.
|
|
|
-}_{=:\frac{\partial f}{\partial x}}
|
|
|
+}_{=:\frac{\partial f}{\partial x}\ (p \times n)\text{-Matrix}}
|
|
|
\underbrace{
|
|
|
\left.
|
|
|
\begin{array}{ccc}
|
|
@@ -1196,11 +1197,11 @@ $$ f'=
|
|
|
\text{; also } f'(x,y)=\left(\frac{\partial f}{\partial x}(x,y),\ \frac{\partial f}{\partial y}(x,y)\right)$$
|
|
|
|
|
|
\begin{satz}[Satz über implizit definierte Funktionen]
|
|
|
-Sei $(x_0, y_0)\in D, f(x_0, y_0)=0$ und $\det\frac{\partial f}{\partial y}(x_0, y_0)\ne 0$. Dann existiert eine offene Umgebung $U\subseteq \MdR^n$ von $x_0$ und genau eine Funktion $g:U\to\MdR^p$ mit:
|
|
|
+Sei $(x_0, y_0)\in D, f(x_0, y_0)=0$ und $\det\frac{\partial f}{\partial y}(x_0, y_0)\ne 0$. Dann existiert eine offene Umgebung $U\subseteq \MdR^n$ von $x_0$ und genau eine Funktion $g:U\to D \subseteq \MdR^p$ mit:
|
|
|
\begin{liste}
|
|
|
\item $(x, g(x))\in D\ \forall x\in U$
|
|
|
\item $g(x_0)=y_0$
|
|
|
-\item $f(x,g(x))=0\ \forall x\in U$
|
|
|
+\item $f(x,g(x))=0\ \forall x\in U$, mit $V = g(U)$ gilt: $V$ ist offen und für $(a, b) \in U \times V$ mit $f(a,b) = 0$ gilt: $b = g(a)$
|
|
|
\item $g \in C^1(U,\MdR^p)$
|
|
|
\item $\det\frac{\partial f}{\partial y}(x, g(x))\ne0\ \forall x\in U$
|
|
|
\item $g'(x)=-\left(\frac{\partial f}{\partial y}(x, g(x))^{-1}\right) \cdot \frac{\partial f}{\partial x}(x, g(x))\ \forall x\in U$
|