|
@@ -307,8 +307,42 @@ As you can easily verify, only $x_1$ is a minimum of $d_{P,f}$.
|
|
|
It is obvious that a quadratic function can have two points with
|
|
|
minimal distance.
|
|
|
|
|
|
-For example, let $f(x) = x^2$ and $P = (0,5)$. Then $P_{f,1} \approx (2.179, 2.179^2)$
|
|
|
-has minimal distance to $P$, but also $P_{f,2}\approx (-2.179, 2.179^2)$.\todo{exact example?}
|
|
|
+For example, let $f(x) = x^2$ and $P = (0,5)$. Then $P_{f,1} = (\sqrt{\frac{9}{2}}, \frac{9}{2})$
|
|
|
+has minimal distance to $P$, but also $P_{f,2} = (-\sqrt{\frac{9}{2}}, \frac{9}{2})$.
|
|
|
+
|
|
|
+\begin{figure}[htp]
|
|
|
+ \centering
|
|
|
+ \begin{tikzpicture}
|
|
|
+ \begin{axis}[
|
|
|
+ %legend pos=north west,
|
|
|
+ axis x line=middle,
|
|
|
+ axis y line=middle,
|
|
|
+ grid = major,
|
|
|
+ width=0.6\linewidth,
|
|
|
+ height=8cm,
|
|
|
+ grid style={dashed, gray!30},
|
|
|
+ xmin=-3, % start the diagram at this x-coordinate
|
|
|
+ xmax= 3, % end the diagram at this x-coordinate
|
|
|
+ ymin= 0, % start the diagram at this y-coordinate
|
|
|
+ ymax= 5, % end the diagram at this y-coordinate
|
|
|
+ axis background/.style={fill=white},
|
|
|
+ xlabel=$x$,
|
|
|
+ ylabel=$y$,
|
|
|
+ %xticklabels={-2,-1.6,...,7},
|
|
|
+ %yticklabels={-8,-7,...,8},
|
|
|
+ tick align=outside,
|
|
|
+ minor tick num=-3,
|
|
|
+ enlargelimits=true,
|
|
|
+ tension=0.08]
|
|
|
+ \addplot[domain=-3:3, thick,samples=50, orange] {x*x};
|
|
|
+ \draw (axis cs:0,5) circle[radius=2.17];
|
|
|
+ \draw[red, thick] (axis cs:0,5) -- (axis cs:2.121,4.5);
|
|
|
+ \draw[red, thick] (axis cs:0,5) -- (axis cs:-2.121,4.5);
|
|
|
+ \addlegendentry{$f(x)=x^2$}
|
|
|
+ \end{axis}
|
|
|
+ \end{tikzpicture}
|
|
|
+ \caption{Two points with minimal distance}
|
|
|
+\end{figure}
|
|
|
|
|
|
As discussed before, there cannot be more than 3 points on the graph
|
|
|
of $f$ next to $P$.
|