|
|
@@ -341,10 +341,9 @@ schneiden sich.
|
|
|
&= d(P, R)\\
|
|
|
&= d(\varphi_2(P), \varphi_2(R))\\
|
|
|
&= d(P', \varphi_2(R))\\
|
|
|
- &= d(Q', \varphi_2(R))
|
|
|
\end{aligned}$\\
|
|
|
und analog $d(Q', \varphi_1(R)) = d(Q', \varphi_2(R))$
|
|
|
- \item Seien $P$, $Q$ und $R$ Fixpunkte von $\varphi$, $R \in PG$
|
|
|
+ \item Seien $P$, $Q$ und $R$ Fixpunkte von $\varphi$, $R \notin PQ$
|
|
|
und $A \notin \overline{PQ} \cup \overline{PR} \cup \overline{QR}$.
|
|
|
Sei $B \in \overline{PQ} \setminus \Set{P, Q}$. Dann ist
|
|
|
$\varphi(B) = B$ wegen \cref{kor:beh2'}.
|
|
|
@@ -415,8 +414,8 @@ schneiden sich.
|
|
|
\begin{beweis}
|
|
|
Zeige $\angle PRQ < \angle RQP'$.
|
|
|
|
|
|
- Sei $M$ der Mittelpunkt der Strecke $\overline{QR}$. Sei
|
|
|
- $A \in MP^-$ mit $d(P,M) = d(M,A)$.
|
|
|
+ Sei $M$ der Mittelpunkt der Strecke $\overline{QR}$ und $P' \in PQ^+ \setminus \overline{PQ}$.
|
|
|
+ Sei $A \in MP^-$ mit $d(P,M) = d(M,A)$.
|
|
|
|
|
|
|
|
|
\begin{figure}[ht]
|
|
|
@@ -460,19 +459,17 @@ schneiden sich.
|
|
|
\label{fig:geometry-6}
|
|
|
\end{figure}
|
|
|
|
|
|
-\begin{beweis}[von \cref{prop:14.7}]
|
|
|
- Seien $P, Q, R \in X$ mit $P, Q \in f \in G$.
|
|
|
-
|
|
|
- Sei $\varphi$ die Isometrie, die $Q$ auf $P$ und $P$ auf $P' \in f$
|
|
|
+\begin{beweis}
|
|
|
+ Seien $P, Q \in f \in G$ und $\varphi$ die Isometrie, die $Q$ auf $P$ und $P$ auf $P' \in f$
|
|
|
mit $d(P,P') = d(P, Q)$ abbildet und die Halbebenen bzgl. $f$ erhält.
|
|
|
|
|
|
\underline{Annahme:} $\varphi(g) \cap g \neq \emptyset$\\
|
|
|
$\Rightarrow$ Es gibt einen Schnittpunkt $\Set{R} = \varphi(g) \cap g$.\\
|
|
|
- Dann ist $\angle QPR < \angle RQP^-$ nach
|
|
|
- \cref{bem:14.9} und $\angle QPR = \angle RQP^-$, weil
|
|
|
+ Dann ist $\angle QPR < \angle RQP'$ nach
|
|
|
+ \cref{bem:14.9} und $\angle QPR = \angle RQP'$, weil
|
|
|
$\varphi(\angle RQP') = \angle RPQ$.\\
|
|
|
$\Rightarrow$ Widerspruch\\
|
|
|
- $\Rightarrow \varphi(g) \cap g = \emptyset$
|
|
|
+ $\Rightarrow \varphi(g) \cap g = \emptyset \qed$
|
|
|
\end{beweis}
|
|
|
|
|
|
\begin{folgerung}\label{folgerung:14.10}%In Vorlesung: Folgerung 14.10
|
|
|
@@ -533,9 +530,19 @@ Sei im Folgenden \enquote{$\IWS$} die \enquote{Innenwinkelsumme}.
|
|
|
\cref{folgerung:14.10}.
|
|
|
\end{behauptung}
|
|
|
|
|
|
- \begin{beweis}[der Behauptung]
|
|
|
- Sei $M$ der Mittelpunkt $\overline{RC}$ und $A' \in MA^-$ mit
|
|
|
- $d(A', M) = d(A, M) \Rightarrow \triangle(MA'C)$ und
|
|
|
+ \begin{beweis}
|
|
|
+ Es seien $A, B, C \in X$ und $\triangle $ das Dreieck mit den
|
|
|
+ Eckpunkten $A, B, C$ und $\alpha$ sei der Innenwinkel bei $A$,
|
|
|
+ $\beta$ der Innenwinkel bei $B$ und $\gamma$ der Innenwinkel bei $C$.
|
|
|
+
|
|
|
+ Sei $M$ der Mittelpunkt der Strecke $\overline{BC}$. Sei außerdem
|
|
|
+ $\alpha_1 = \angle CAM$ und $\alpha_2 = \angle BAM$.
|
|
|
+
|
|
|
+ Sei weiter $A' \in MA^-$ mit $d(A', M) = d(A, M)$.
|
|
|
+
|
|
|
+ Die Situation ist in \cref{fig:prop14.11.2} skizziert.
|
|
|
+
|
|
|
+ $ \Rightarrow \triangle(MA'C)$ und
|
|
|
$\triangle(MAB)$ sind kongruent.
|
|
|
$\Rightarrow \angle ABM = \angle A'CM$ und $\angle MA'C = \angle MAB$.
|
|
|
$\Rightarrow \alpha + \beta + \gamma =\IWS(\triangle ABC) = \IWS(\triangle AA'C)$
|
|
|
@@ -888,11 +895,11 @@ $\xRightarrow{\text{Strahlensatz}} \frac{a}{h_c} = \frac{c}{h_a} \rightarrow a \
|
|
|
\item Ansatz: $\sigma = \begin{pmatrix}a & b\\c & d\end{pmatrix}$
|
|
|
$\sigma(x_0) = \frac{ax_0 + b}{c x_0 + d} \overset{!}{=} 0$
|
|
|
$\Rightarrow a x_0 + b = 0 \Rightarrow b = -a x_0$\\
|
|
|
- $\sigma(x_\infty) = \infty \Rightarrow c x_\infty + d = 0 \Rightarrow d = - x_\infty$\\
|
|
|
+ $\sigma(x_\infty) = \infty \Rightarrow c x_\infty + d = 0 \Rightarrow d = - c x_\infty$\\
|
|
|
$\sigma(x_1) = 1 \Rightarrow a x_1 + b = c x_1 + d$\\
|
|
|
$a (x_1 - x_0) = c (x_1 - x_\infty) \Rightarrow c = a \frac{x_1 - x_0}{x_1 - x_\infty}$\\
|
|
|
$\Rightarrow - a^2 \cdot x_\infty \frac{x_1 - x_0}{x_1 - x_\infty} + a^2 x_0 \frac{x_1 - x_0}{x_1 - x_\infty} = 1$\\
|
|
|
- $\Rightarrow a^2 \frac{x_1 - x_0}{x_1 - x_\infty} (x_0 - x_\infty) = 1$
|
|
|
+ $\Rightarrow a^2 \frac{x_1 - x_0}{x_0 - x_\infty} (x_0 - x_\infty) = 1$
|
|
|
$\Rightarrow a^2 = \frac{x_1 - x_\infty}{(x_1 - x_\infty) (x_1 - x_0)}$
|
|
|
\item TODO d)
|
|
|
\item Es genügt die Aussage für Matrizen aus \cref{prop:15.2d}
|
|
|
@@ -1001,7 +1008,8 @@ $\xRightarrow{\text{Strahlensatz}} \frac{a}{h_c} = \frac{c}{h_a} \rightarrow a \
|
|
|
\item $\DV(0, 1, \infty, z_4) = \frac{(0- z_4) \cdot (\infty - 1)}{(0 -1) \cdot (\infty - z_4)} = \frac{z_4 \cdot (\infty - 1)}{\infty - z_4} = z_4$
|
|
|
\item TODO
|
|
|
\item Sei $\sigma \in \PSL_2(\mdc)$ mit $\sigma(z_1) = 0$, $\sigma(z_2) = 1$,
|
|
|
- $\sigma(z_3) = \infty$ (gibt es?)
|
|
|
+ $\sigma(z_3) = \infty$. Ein solches $\sigma$ existiert, da man drei
|
|
|
+ Parameter von $\sigma$ wählen darf.
|
|
|
|
|
|
$\overset{\mathclap{\crefabbr{bem:15.4d}}}{\Rightarrow}\hspace{4mm} \DV(z_1, \dots, z_4) = \DV(0, 1, \infty, \sigma(z_4))$\\
|
|
|
$\Rightarrow\hspace{4mm} \DV(z_1, \dots, z_4) \in \mdr \cup \Set{\infty}$\\
|
|
|
@@ -1052,18 +1060,18 @@ $\xRightarrow{\text{Strahlensatz}} \frac{a}{h_c} = \frac{c}{h_a} \rightarrow a \
|
|
|
|
|
|
also gilt \obda $z_1 = \iu a$ und $z_2 = \iu b$ mit $a,b \in \mdr$ und $a < b$.
|
|
|
\begin{align*}
|
|
|
- 2d(\iu a, \iu b)&= \ln \mid \DV(0, \iu a, \infty, \iu b) \mid \\
|
|
|
- &= \ln \mid \frac{(0 - \iu b) (\infty - \iu a)}{(0 - \iu a)(\infty - \iu b)} \mid \\
|
|
|
- &= \ln \mid \frac{b}{a} \mid\\
|
|
|
+ 2d(\iu a, \iu b)&= \mid \ln \DV(0, \iu a, \infty, \iu b) \mid \\
|
|
|
+ &= \mid \ln \frac{(0 - \iu b) (\infty - \iu a)}{(0 - \iu a)(\infty - \iu b)} \mid \\
|
|
|
+ &= \mid \ln \frac{b}{a} \mid\\
|
|
|
&= \ln b - \ln a
|
|
|
\end{align*}
|
|
|
|
|
|
Also: $d(z_1, z_2) \geq 0$, $d(z_1, z_2) = 0 \gdw z_1 = z_2$
|
|
|
|
|
|
\begin{align*}
|
|
|
- 2 d(z_2, z_1) &= \ln \DV(a_2, z_2, a_1, z_1)\\
|
|
|
- &= \ln \DV(\infty, \iu b, 0, \iu a)\\
|
|
|
- &\overset{\mathclap{\crefabbr{bem:15.4b.ii}}}{=}\hspace{5mm} \ln \DV(0, \iu b, \infty, \iu a)\\
|
|
|
+ 2 d(z_2, z_1) &= \mid \ln \DV(a_2, z_2, a_1, z_1) \mid\\
|
|
|
+ &= \mid \ln \DV(\infty, \iu b, 0, \iu a) \mid\\
|
|
|
+ &\overset{\mathclap{\crefabbr{bem:15.4b.ii}}}{=}\hspace{5mm} \mid \ln \DV(0, \iu b, \infty, \iu a) \mid \\
|
|
|
&= 2 d(z_1, z_2)
|
|
|
\end{align*}
|
|
|
|