浏览代码

added some ideas; heavy restructuring

Martin Thoma 11 年之前
父节点
当前提交
1f7971f5ab

+ 1 - 1
documents/math-minimal-distance-to-cubic-function/Makefile

@@ -5,4 +5,4 @@ make:
 	make clean
 
 clean:
-	rm -rf  $(TARGET) *.class *.log *.aux *.out *.thm
+	rm -rf  $(TARGET) *.class *.log *.aux *.out *.thm *.toc

+ 48 - 0
documents/math-minimal-distance-to-cubic-function/constant-functions.tex

@@ -0,0 +1,48 @@
+\chapter{Constant functions}
+\section{Defined on $\mdr$}
+Let $f(x) = c$ with $c \in \mdr$ be a constant function. 
+
+\begin{figure}[htp]
+    \centering
+    \begin{tikzpicture}
+        \begin{axis}[
+            legend pos=north west,
+            axis x line=middle,
+            axis y line=middle,
+            grid = major,
+            width=0.8\linewidth,
+            height=8cm,
+            grid style={dashed, gray!30},
+            xmin=-5, % start the diagram at this x-coordinate
+            xmax= 5, % end   the diagram at this x-coordinate
+            ymin= 0, % start the diagram at this y-coordinate
+            ymax= 3, % end   the diagram at this y-coordinate
+            axis background/.style={fill=white},
+            xlabel=$x$,
+            ylabel=$y$,
+            tick align=outside,
+            minor tick num=-3,
+            enlargelimits=true,
+            tension=0.08]
+          \addplot[domain=-5:5, thick,samples=50, red] {1};
+          \addplot[domain=-5:5, thick,samples=50, green] {2};
+          \addplot[domain=-5:5, thick,samples=50, blue, densely dotted] {3};
+          \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
+          \addplot[blue, mark = *, nodes near coords=$P_{h,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(2, 3)};
+          \addplot[green, mark = x, nodes near coords=$P_{g,\text{min}}$,every node near coord/.style={anchor=120}] coordinates {(2, 2)};
+          \addplot[red, mark = *, nodes near coords=$P_{f,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(2, 1)};
+          \draw[thick, dashed] (axis cs:2,0) -- (axis cs:2,3);
+          \addlegendentry{$f(x)=1$}
+          \addlegendentry{$g(x)=2$}
+          \addlegendentry{$h(x)=3$}
+        \end{axis} 
+    \end{tikzpicture}
+    \caption{Three constant functions and their points with minimal distance}
+    \label{fig:constant-min-distance}
+\end{figure}
+
+Then $(x_P,f(x_P))$ has
+minimal distance to $P$. Every other point has higher distance.
+See Figure~\ref{fig:constant-min-distance}.
+
+\section{Defined on a closed interval of $\mdr$}

+ 218 - 0
documents/math-minimal-distance-to-cubic-function/cubic-functions.tex

@@ -0,0 +1,218 @@
+\chapter{Cubic functions}
+\section{Defined on $\mdr$}
+Let $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ be a cubic function
+with $a \in \mdr \setminus \Set{0}$ and 
+$b, c, d \in \mdr$ be a function.
+
+\begin{figure}[htp]
+    \centering
+\begin{tikzpicture}
+    \begin{axis}[
+        legend pos=south east,
+        axis x line=middle,
+        axis y line=middle,
+        grid = major,
+        width=0.8\linewidth,
+        height=8cm,
+        grid style={dashed, gray!30},
+        xmin=-3, % start the diagram at this x-coordinate
+        xmax= 3, % end   the diagram at this x-coordinate
+        ymin=-3, % start the diagram at this y-coordinate
+        ymax= 3, % end   the diagram at this y-coordinate
+        axis background/.style={fill=white},
+        xlabel=$x$,
+        ylabel=$y$,
+        tick align=outside,
+        minor tick num=-3,
+        enlargelimits=true,
+        tension=0.08]
+      \addplot[domain=-3:3, thick,samples=50, red] {x*x*x}; 
+      \addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x*x};
+      \addplot[domain=-3:3, thick,samples=50, blue] {x*x*x+2*x*x};
+      \addplot[domain=-3:3, thick,samples=50, orange] {x*x*x+x}; 
+      \addlegendentry{$f_1(x)=x^3$}
+      \addlegendentry{$f_2(x)=x^3 + x^2$}
+      \addlegendentry{$f_2(x)=x^3 + 2 \cdot x^2$}
+      \addlegendentry{$f_1(x)=x^3 + x$}
+    \end{axis} 
+\end{tikzpicture}
+    \caption{Cubic functions}
+\end{figure}
+
+%
+%\section{Special points}
+%\todo[inline]{Write this}
+%
+%\section{Voronoi}
+%
+%For $b^2 \geq 3ac$
+%
+%\todo[inline]{Write this}
+
+\subsection{Calculate points with minimal distance}
+\begin{theorem}
+    There cannot be an algebraic solution to the problem of finding 
+    a closest point $(x, f(x))$ to a given point $P$ when $f$ is
+    a polynomial function of degree $3$ or higher.
+\end{theorem}
+
+\begin{proof}
+    Suppose you could solve the closest point problem for arbitrary
+    cubic functions $f = ax^3 + bx^2 + cx + d$ and arbitrary points $P = (x_P, y_P)$.
+
+    Then you could solve the following problem for $x$:
+    \begin{align}
+        0  &\stackrel{!}{=} \left ((d_{P,f}(x))^2 \right )'
+           &=-2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\
+           &= 2 f(x) \cdot f'(x) - 2 y_p f'(x) + 2x - 2 x_p\\
+           &= f(x) \cdot f'(x) - y_p f'(x) + x - x_p\\
+           &= \underbrace{f'(x) \cdot \left (f(x) - y_p \right )}_{\text{Polynomial of degree 5}} + x - x_p
+    \end{align}
+
+    General algebraic equations of degree 5 don't have a solution formula.\footnote{TODO: Quelle}
+    Although here seems to be more structure, the resulting algebraic
+    equation can be almost any polynomial of degree 5:\footnote{Thanks to Peter Košinár on \href{http://math.stackexchange.com/a/584814/6876}{math.stackexchange.com} for this one}
+
+    \begin{align}
+        0  &\stackrel{!}{=} f'(x) \cdot \left (f(x) - y_p \right ) + (x - x_p)\\
+        &= \underbrace{3 a^2}_{= \tilde{a}} x^5 + \underbrace{5ab}_{\tilde{b}}x^4 + \underbrace{2(2ac + b^2 )}_{=: \tilde{c}}x^3 &+& \underbrace{3(ad+bc-ay_p)}_{\tilde{d}} x^2 \\
+        & &+& \underbrace{(2 b d+c^2+1-2 b y_p)}_{=: \tilde{e}}x+\underbrace{c d-c y_p-x_p}_{=: \tilde{f}}\\
+        0 &\stackrel{!}{=} \tilde{a}x^5 + \tilde{b}x^4 + \tilde{c}x^3 + \tilde{d}x^2 + \tilde{e}x + \tilde{f}
+    \end{align}
+
+    \begin{enumerate}
+        \item For any coefficient $\tilde{a} \in \mdr_{> 0}$ of $x^5$ we can choose $a$ such that we get $\tilde{a}$.
+        \item For any coefficient $\tilde{b} \in \mdr \setminus \Set{0}$ of $x^4$ we can choose $b$ such that we get $\tilde{b}$.
+        \item With $c$, we can get any value of $\tilde{c} \in \mdr$.
+        \item With $d$, we can get any value of $\tilde{d} \in \mdr$.
+        \item With $y_p$, we can get any value of $\tilde{e} \in \mdr$.
+        \item With $x_p$, we can get any value of $\tilde{f} \in \mdr$.
+    \end{enumerate}
+
+    The first restriction guaratees that we have a polynomial of 
+    degree 5. The second one is necessary, to get a high range of
+    $\tilde{e}$.
+
+    This means, that there is no solution formula for the problem of 
+    finding the closest points on a cubic function to a given point,
+    because if there was one, you could use this formula for finding
+    roots of polynomials of degree 5. $\qed$
+\end{proof}
+
+
+\subsection{Another approach}
+\todo[inline]{Currently, this is only an idea. It might be usefull
+to move the cubic function $f$ such that $f$ is point symmetric
+to the origin. But I'm not sure how to make use of this symmetry.}
+Just like we moved the function $f$ and the point to get in a 
+nicer situation, we can apply this approach for cubic functions.
+
+\begin{figure}[htp]
+    \centering
+\begin{tikzpicture}
+    \begin{axis}[
+        legend pos=south east,
+        axis x line=middle,
+        axis y line=middle,
+        grid = major,
+        width=0.8\linewidth,
+        height=8cm,
+        grid style={dashed, gray!30},
+        xmin=-3, % start the diagram at this x-coordinate
+        xmax= 3, % end   the diagram at this x-coordinate
+        ymin=-3, % start the diagram at this y-coordinate
+        ymax= 3, % end   the diagram at this y-coordinate
+        axis background/.style={fill=white},
+        xlabel=$x$,
+        ylabel=$y$,
+        tick align=outside,
+        minor tick num=-3,
+        enlargelimits=true,
+        tension=0.08]
+      \addplot[domain=-3:3, thick,samples=50, red] {x*x*x}; 
+      \addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x};
+      \addplot[domain=-3:3, thick,samples=50, orange] {x*x*x-x}; 
+      \addplot[domain=-3:3, thick,samples=50, blue, dotted] {x*x*x+2*x};
+      \addplot[domain=-3:3, thick,samples=50, lime, dashed] {x*x*x+3*x};
+      \addlegendentry{$f_1(x)=x^3$}
+      \addlegendentry{$f_2(x)=x^3 + x$}
+      \addlegendentry{$f_1(x)=x^3 - x$}
+      \addlegendentry{$f_2(x)=x^3 + 2 \cdot x$}
+      \addlegendentry{$f_2(x)=x^3 + 3 \cdot x$}
+    \end{axis} 
+\end{tikzpicture}
+    \caption{Cubic functions with $b = d = 0$}
+\end{figure}
+
+First, we move $f_0$ by $\frac{b}{3a}$ to the right, so
+
+\[f_1(x) = ax^3 + \frac{b^2 (c-1)}{3a} x + \frac{2b^3}{27 a^2} - \frac{bc}{3a} + d \;\;\;\text{ and }\;\;\;P_1 = (x_P + \frac{b}{3a}, y_P)\]
+
+because
+
+\begin{align}
+    f_1(x) &= a \left (x - \frac{b}{3a} \right )^3 + b \left (x-\frac{b}{3a} \right )^2 + c \left (x-\frac{b}{3a} \right ) + d\\
+           &= a \left (x^3 - 3 \frac{b}{3a}x^2 + 3 (\frac{b}{3a})^2 x - \frac{b^3}{27a^3} \right )
+             +b \left (x^2 - \frac{2b}{3a} x + \frac{b^2}{9a^2} \right )
+             +c x - \frac{bc}{3a} + d\\
+            &= ax^3 - bx^2 + \frac{b^2}{3a}x - \frac{b^3}{27 a^2}\\
+            & \;\;\;\;\;\;+ bx^2 - \frac{2b^2}{3a}x + \frac{b^3}{9a^2}\\
+            & \;\;\;\;\;\;\;\;\;\;\;\; + c x - \frac{bc}{3a} + d\\
+            &= ax^3 + \frac{b^2}{3a}\left (1-2+c \right )x + \frac{b^3}{9a^2} \left (1-\frac{1}{3} \right )- \frac{bc}{3a} + d
+\end{align}
+
+\subsection{Number of points with minimal distance}
+As this leads to a polynomial of degree 5 of which we have to find
+roots, there cannot be more than 5 solutions.
+\todo[inline]{Can there be 3, 4 or even 5 solutions? Examples!
+
+After looking at function graphs of cubic functions, I'm pretty 
+sure that there cannot be 4 or 5 solutions, no matter how you 
+chose the cubic function $f$ and $P$.
+
+I'm also pretty sure that there is no polynomial (no matter what degree)
+that has more than 3 solutions.}
+
+
+\subsection{Interpolation and approximation}
+\subsubsection{Quadratic spline interpolation}
+You could interpolate the cubic function by a quadratic spline.
+
+\subsubsection{Bisection method}
+\todo[inline]{TODO}
+
+\subsubsection{Newtons method}
+One way to find roots of functions is Newtons method. It gives an
+iterative computation procedure that can converge quadratically 
+if some conditions are met:
+
+\begin{theorem}[local quadratic convergence of Newton's method]
+    Let $D \subseteq \mdr^n$ be open and $f: D \rightarrow \mdr^n \in C^2(\mdr)$.
+    Let $x^* \in D$ with $f(x^*) = 0$ and the Jaccobi-Matrix $f'(x^*)$
+    should not be invertable when evaluated at the root.
+
+    Then there is a sphere 
+    \[K := K_\rho(x^*) = \Set{x \in \mdr^n | \|x- x^*\|_\infty \leq \rho} \subseteq D\]
+    such that $x^*$ is the only root of $f$ in $K$. Furthermore,
+    the elements of the sequence
+    \[ x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}\]
+    are for every starting value $x_0 \in K$ again in $K$ and
+    \[\lim_{n \rightarrow \infty} x_k = x^*\]
+    Also, there is a constant $C > 0$ such that
+    \[\|x^* - x_{n+1} \| = C \|x^* - x_n\|^2 \text{ for } n \in \mathbb{N}_0\|\]
+\end{theorem}
+
+The approach is extraordinary simple. You choose a starting value
+$x_0$ and compute
+
+\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\]
+
+As soon as the values don't change much, you are close to a root.
+The problem of this approach is choosing a starting value that is
+close enough to the root. So we have to have a \enquote{good}
+initial guess.
+
+\subsubsection{Quadratic minimization}
+\todo[inline]{TODO}
+
+\section{Defined on a closed interval of $\mdr$}

+ 24 - 0
documents/math-minimal-distance-to-cubic-function/introduction.tex

@@ -0,0 +1,24 @@
+\chapter*{Introduction}
+When you want to develop a selfdriving car, you have to plan which path 
+it should take. A reasonable choice for the representation of
+paths are cubic splines. You also have to be able to calculate
+how to steer to get or to remain on a path. A way to do this
+is applying the \href{https://en.wikipedia.org/wiki/PID_algorithm}{PID algorithm}.
+This algorithm needs to know the signed current error. So you need to 
+be able to get the minimal distance of a point to a cubic spline combined with the direction (left or right).
+As you need to get the signed error (and one steering direction might
+be prefered), it is not only necessary to
+get the minimal absolute distance, but might also help to get all points
+on the spline with minimal distance.
+
+In this paper I want to discuss how to find all points on a cubic 
+function with minimal distance to a given point.
+As other representations of paths might be easier to understand and
+to implement, I will also cover the problem of finding the minimal
+distance of a point to a polynomial of degree 0, 1 and 2.
+
+While I analyzed this problem, I've got interested in variations
+of the underlying PID-related problem. So I will try to give
+robust and easy-to-implement algorithms to calculated the distance
+of a point to a (piecewise or global) defined polynomial function
+of degree $\leq 3$.

+ 58 - 0
documents/math-minimal-distance-to-cubic-function/linear-functions.tex

@@ -0,0 +1,58 @@
+\chapter{Linear function}
+\section{Defined on $\mdr$}
+Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and 
+$t \in \mdr$ be a linear function.
+
+\begin{figure}[htp]
+    \centering
+    \begin{tikzpicture}
+        \begin{axis}[
+            legend pos=north east,
+            axis x line=middle,
+            axis y line=middle,
+            grid = major,
+            width=0.8\linewidth,
+            height=8cm,
+            grid style={dashed, gray!30},
+            xmin= 0, % start the diagram at this x-coordinate
+            xmax= 5, % end   the diagram at this x-coordinate
+            ymin= 0, % start the diagram at this y-coordinate
+            ymax= 3, % end   the diagram at this y-coordinate
+            axis background/.style={fill=white},
+            xlabel=$x$,
+            ylabel=$y$,
+            tick align=outside,
+            minor tick num=-3,
+            enlargelimits=true,
+            tension=0.08]
+          \addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
+          \addplot[domain=-5:5, thick,samples=50, blue] {-2*x+6};
+          \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
+          \addlegendentry{$f(x)=\frac{1}{2}x$}
+          \addlegendentry{$g(x)=-2x+6$}
+        \end{axis} 
+    \end{tikzpicture}
+    \caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular}
+    \label{fig:linear-min-distance}
+\end{figure}
+
+Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The 
+slope of $f_\bot$ is $- \frac{1}{m}$ and $t_\bot$ can be calculated:\nobreak
+\begin{align}
+                 f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
+    \Rightarrow        y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
+    \Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P
+\end{align}
+
+The point $(x, f(x))$ where the perpendicular $f_\bot$ crosses $f$
+is calculated this way:
+\begin{align}
+    f(x) &= f_\bot(x)\\
+    \Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
+    \Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
+    \Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )
+\end{align}
+
+There is only one point with minimal distance. See Figure~\ref{fig:linear-min-distance}.
+
+\section{Defined on a closed interval of $\mdr$}

二进制
documents/math-minimal-distance-to-cubic-function/math-minimal-distance-to-cubic-function.pdf


+ 15 - 582
documents/math-minimal-distance-to-cubic-function/math-minimal-distance-to-cubic-function.tex

@@ -1,4 +1,4 @@
-\documentclass[a4paper]{scrartcl}
+\documentclass[a4paper,oneside,DIV15,BCOR12mm]{scrbook}
 \usepackage{amssymb, amsmath} % needed for math
 \usepackage{mathtools}      % \xRightarrow
 \usepackage[utf8]{inputenc} % this is needed for umlauts
@@ -16,7 +16,8 @@
 \usepackage{framed}
 \usepackage{nicefrac}
 \usepackage{siunitx}
-\usepackage{csquotes}
+\usepackage{csquotes}   % enquote
+\usepackage{microtype}  % better document formatting
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 % Define theorems                                                   %
@@ -54,586 +55,18 @@
 % Begin document                                                    %
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 \begin{document}
+\pagenumbering{roman}
+\setcounter{page}{1}
 \maketitle
-\begin{abstract}
-When you want to develop a selfdriving car, you have to plan which path 
-it should take. A reasonable choice for the representation of
-paths are cubic splines. You also have to be able to calculate
-how to steer to get or to remain on a path. A way to do this
-is applying the \href{https://en.wikipedia.org/wiki/PID_algorithm}{PID algorithm}.
-This algorithm needs to know the signed current error. So you need to 
-be able to get the minimal distance of a point to a cubic spline combined with the direction (left or right).
-As you need to get the signed error (and one steering direction might
-be prefered), it is not only necessary to
-get the minimal absolute distance, but might also help to get all points
-on the spline with minimal distance.
-
-In this paper I want to discuss how to find all points on a cubic 
-function with minimal distance to a given point.
-As other representations of paths might be easier to understand and
-to implement, I will also cover the problem of finding the minimal
-distance of a point to a polynomial of degree 0, 1 and 2.
-\end{abstract}
-
-\section{Description of the Problem}
-Let $f: \mdr \rightarrow \mdr$ be a polynomial function and $P \in \mdr^2$
-be a point. Let $d_{P,f}: \mdr \rightarrow \mdr_0^+$
-be the Euklidean distance of a point $P$ and a point $\left (x, f(x) \right )$
-on the graph of $f$:
-\[d_{P,f} (x) := \sqrt{(x_P - x)^2 + (y_P - f(x))^2}\]
-
-Now there is finite set $M = \Set{x_1, \dots, x_n}$ of minima for given $f$ and $P$:
-\[M = \Set{x \in \mdr | d_{P,f}(x) = \min_{\overline{x} \in \mdr} d_{P,f}(\overline{x})}\] 
-
-But minimizing $d_{P,f}$ is the same as minimizing $d_{P,f}^2$:
-\begin{align}
-    d_{P,f}(x)^2    &= \sqrt{(x_P - x)^2 + (y_P - f(x))^2}^2\\
-                &= x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2
-\end{align}
-
-\begin{theorem}[Fermat's theorem about stationary points]\label{thm:required-extremum-property}
-    Let $x_0$ be a local extremum of a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$.
-
-    Then: $f'(x_0) = 0$.
-\end{theorem}
-\clearpage
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% Constant functions                                                %
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\section{Minimal distance to a constant function}
-Let $f(x) = c$ with $c \in \mdr$ be a constant function. 
-
-\begin{figure}[htp]
-    \centering
-    \begin{tikzpicture}
-        \begin{axis}[
-            legend pos=north west,
-            axis x line=middle,
-            axis y line=middle,
-            grid = major,
-            width=0.8\linewidth,
-            height=8cm,
-            grid style={dashed, gray!30},
-            xmin=-5, % start the diagram at this x-coordinate
-            xmax= 5, % end   the diagram at this x-coordinate
-            ymin= 0, % start the diagram at this y-coordinate
-            ymax= 3, % end   the diagram at this y-coordinate
-            axis background/.style={fill=white},
-            xlabel=$x$,
-            ylabel=$y$,
-            tick align=outside,
-            minor tick num=-3,
-            enlargelimits=true,
-            tension=0.08]
-          \addplot[domain=-5:5, thick,samples=50, red] {1};
-          \addplot[domain=-5:5, thick,samples=50, green] {2};
-          \addplot[domain=-5:5, thick,samples=50, blue, densely dotted] {3};
-          \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
-          \addplot[blue, mark = *, nodes near coords=$P_{h,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(2, 3)};
-          \addplot[green, mark = x, nodes near coords=$P_{g,\text{min}}$,every node near coord/.style={anchor=120}] coordinates {(2, 2)};
-          \addplot[red, mark = *, nodes near coords=$P_{f,\text{min}}$,every node near coord/.style={anchor=225}] coordinates {(2, 1)};
-          \draw[thick, dashed] (axis cs:2,0) -- (axis cs:2,3);
-          \addlegendentry{$f(x)=1$}
-          \addlegendentry{$g(x)=2$}
-          \addlegendentry{$h(x)=3$}
-        \end{axis} 
-    \end{tikzpicture}
-    \caption{Three constant functions and their points with minimal distance}
-    \label{fig:constant-min-distance}
-\end{figure}
-
-Then $(x_P,f(x_P))$ has
-minimal distance to $P$. Every other point has higher distance.
-See Figure~\ref{fig:constant-min-distance}.
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% Linear functions                                                  %
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\section{Minimal distance to a linear function}
-Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and 
-$t \in \mdr$ be a linear function.
-
-\begin{figure}[htp]
-    \centering
-    \begin{tikzpicture}
-        \begin{axis}[
-            legend pos=north east,
-            axis x line=middle,
-            axis y line=middle,
-            grid = major,
-            width=0.8\linewidth,
-            height=8cm,
-            grid style={dashed, gray!30},
-            xmin= 0, % start the diagram at this x-coordinate
-            xmax= 5, % end   the diagram at this x-coordinate
-            ymin= 0, % start the diagram at this y-coordinate
-            ymax= 3, % end   the diagram at this y-coordinate
-            axis background/.style={fill=white},
-            xlabel=$x$,
-            ylabel=$y$,
-            tick align=outside,
-            minor tick num=-3,
-            enlargelimits=true,
-            tension=0.08]
-          \addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
-          \addplot[domain=-5:5, thick,samples=50, blue] {-2*x+6};
-          \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
-          \addlegendentry{$f(x)=\frac{1}{2}x$}
-          \addlegendentry{$g(x)=-2x+6$}
-        \end{axis} 
-    \end{tikzpicture}
-    \caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular}
-    \label{fig:linear-min-distance}
-\end{figure}
-
-Now you can drop a perpendicular $f_\bot$ through $P$ on $f(x)$. The 
-slope of $f_\bot$ is $- \frac{1}{m}$ and $t_\bot$ can be calculated:\nobreak
-\begin{align}
-                 f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
-    \Rightarrow        y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
-    \Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P
-\end{align}
-
-The point $(x, f(x))$ where the perpendicular $f_\bot$ crosses $f$
-is calculated this way:
-\begin{align}
-    f(x) &= f_\bot(x)\\
-    \Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
-    \Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
-    \Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )
-\end{align}
-
-There is only one point with minimal distance. See Figure~\ref{fig:linear-min-distance}.
-\clearpage
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% Quadratic functions                                               %
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\section{Minimal distance to a quadratic function}
-Let $f(x) = a \cdot x^2 + b \cdot x + c$ with $a \in \mdr \setminus \Set{0}$ and 
-$b, c \in \mdr$ be a quadratic function.
-
-\begin{figure}[htp]
-    \centering
-\begin{tikzpicture}
-    \begin{axis}[
-        legend pos=north west,
-        axis x line=middle,
-        axis y line=middle,
-        grid = major,
-        width=0.8\linewidth,
-        height=8cm,
-        grid style={dashed, gray!30},
-        xmin=-3,    % start the diagram at this x-coordinate
-        xmax= 3,    % end   the diagram at this x-coordinate
-        ymin=-0.25, % start the diagram at this y-coordinate
-        ymax= 9,    % end   the diagram at this y-coordinate
-        axis background/.style={fill=white},
-        xlabel=$x$,
-        ylabel=$y$,
-        tick align=outside,
-        minor tick num=-3,
-        enlargelimits=true,
-        tension=0.08]
-      \addplot[domain=-3:3, thick,samples=50, red]    {0.5*x*x}; 
-      \addplot[domain=-3:3, thick,samples=50, green]  { x*x}; 
-      \addplot[domain=-3:3, thick,samples=50, blue]   { x*x +   x};
-      \addplot[domain=-3:3, thick,samples=50, orange,dotted] { x*x + 2*x};
-      \addplot[domain=-3:3, thick,samples=50, black,dashed]  {-x*x + 6};
-      \addlegendentry{$f_1(x)=\frac{1}{2}x^2$}
-      \addlegendentry{$f_2(x)=x^2$}
-      \addlegendentry{$f_3(x)=x^2+x$}
-      \addlegendentry{$f_4(x)=x^2+2x$}
-      \addlegendentry{$f_5(x)=-x^2+6$}
-    \end{axis} 
-\end{tikzpicture}
-    \caption{Quadratic functions}
-\end{figure}
-
-\subsection{Calculate points with minimal distance}
-In this case, $d_{P,f}^2$ is polynomial of degree 4. 
-We use Theorem~\ref{thm:required-extremum-property}:\nobreak
-\begin{align}
-    0     &\overset{!}{=} (d_{P,f}^2)'\\
-          &= -2 x_p + 2x -2y_p f'(x) + \left (f(x)^2 \right )'\\
-          &= -2 x_p + 2x -2y_p f'(x) + 2 f(x) \cdot f'(x) \rlap{\hspace*{3em}(chain rule)}\label{eq:minimizingFirstDerivative}\\
-\Leftrightarrow 0 &\overset{!}{=} -x_p + x -y_p f'(x) + f(x) \cdot f'(x) \rlap{\hspace*{3em}(divide by 2)}\label{eq:minimizingFirstDerivative}\\
-          &= -x_p + x -y_p (2ax+b) + (ax^2+bx+c)(2ax+b)\\
-          &= -x_p + x -y_p \cdot 2ax- y_p b + (2 a^2 x^3+2 a b x^2+2 a c x+ab x^2+b^2 x+bc)\\
-          &= -x_p + x -2y_p ax- y_p b + (2a^2 x^3 + 3 ab x^2 + 2acx + b^2 x + bc)\\
-          &= 2a^2 x^3 + 3 ab x^2 + (1 -2y_p a+ 2ac + b^2)x +(bc-by_p-x_p)\label{eq:quadratic-derivative-eq-0}
-\end{align}
-
-This is an algebraic equation of degree 3.
-There can be up to 3 solutions in such an equation. Those solutions
-can be found with a closed formula.
-
-\todo[inline]{Where are those closed formulas?}
-
-\begin{example}
-    Let $a = 1,  b = 0,  c= 1, x_p= 0, y_p = 1$.
-    So $f(x) = x^2 + 1$ and $P(0, 1)$.
-
-\begin{align}
-    0 &\stackrel{!}{=} 4 x^3 - 2x\\
-      &=2x(2x^2 - 1)\\
-    \Rightarrow x_1 &= 0 \;\;\; x_{2,3} = \pm \frac{1}{\sqrt{2}}
-\end{align}
-
-As you can easily verify, only $x_1$ is a minimum of $d_{P,f}$.
-\end{example}
-
-
-\subsection{Number of points with minimal distance}
-\begin{theorem}
-    A point $P$ has either one or two points on the graph of a 
-    quadratic function $f$ that are closest to $P$.
-\end{theorem}
-
-In the following, I will do some transformations with $f = f_0$ and
-$P = P_0$ .
-
-Moving $f_0$ and $P_0$ simultaneously in $x$ or $y$ direction does 
-not change the minimum distance. Furthermore, we can find the 
-points with minimum distance on the moved situation and calculate
-the minimum points in the original situation.
-
-First of all, we move $f_0$ and $P_0$ by $\frac{b}{2a}$ in $x$ direction, so
-\[f_1(x) = ax^2 - \frac{b^2}{4a} + c \;\;\;\text{ and }\;\;\; P_1 = \left (x_p+\frac{b}{2a},\;\; y_p \right )\]
-
-Because:\footnote{The idea why you subtract $\frac{b}{2a}$ within
-$f$ is that when you subtract something from $x$ before applying
-$f$ it takes more time ($x$ needs to be bigger) to get to the same
-situation. So to move the whole graph by $1$ to the left whe have
-to add $+1$.}
-\begin{align}
-    f(x-\nicefrac{b}{2a}) &= a (x-\nicefrac{b}{2a})^2 + b (x-\nicefrac{b}{2a}) + c\\
-    &= a (x^2 - \nicefrac{b}{a} x + \nicefrac{b^2}{4a^2}) + bx - \nicefrac{b^2}{2a} + c\\
-    &= ax^2 - bx + \nicefrac{b^2}{4a} + bx - \nicefrac{b^2}{2a} + c\\
-    &= ax^2 -\nicefrac{b^2}{4a} + c
-\end{align}
-
-
-Then move $f_1$ and $P_1$ by $\frac{b^2}{4a}-c$ in $y$ direction. You get:
-\[f_2(x) = ax^2\;\;\;\text{ and }\;\;\; P_2 = \Big (\underbrace{x_P+\frac{b}{2a}}_{=: z},\;\; \underbrace{y_P+\frac{b^2}{4a}-c}_{=: w} \Big )\]
-
-\textbf{Case 1:} As $f_2(x) = ax^2$ is symmetric to the $y$ axis, only points 
-$P = (0, w)$ could possilby have three minima.
-
-Then compute:
-\begin{align}
-  d_{P,{f_2}}(x)  &= \sqrt{(x-0)^2 + (f_2(x)-w)^2}\\
-    &= \sqrt{x^2 + (ax^2-w)^2}\\
-    &= \sqrt{x^2 + a^2 x^4-2aw x^2+w^2}\\
-    &= \sqrt{a^2 x^4 + (1-2aw) x^2 + w^2}\\
-    &= \sqrt{\left (a^2 x^2 + \frac{1-2 a w}{2} \right )^2 + w^2 - (1-2 a w)^2}\\
-    &= \sqrt{\left (a^2 x^2 + \nicefrac{1}{2}-a w \right )^2 + \big (w^2 - (1-2 a w)^2 \big)}
-\end{align}
-
-The term 
-\[a^2 x^2 + (\nicefrac{1}{2}-a w)\]
-should get as close to $0$ as possilbe when we want to minimize 
-$d_{P,{f_2}}$. For $w \leq \nicefrac{1}{2a}$ you only have $x = 0$ as a minimum.
-For all other points $P = (0, w)$, there are exactly two minima $x_{1,2} = \pm \sqrt{aw - \nicefrac{1}{2}}$.
-
-\textbf{Case 2:} $P = (z, w)$ is not on the symmetry axis, so $z \neq 0$. Then you compute:
-\begin{align}
-  d_{P,{f_2}}(x)  &= \sqrt{(x-z)^2 + (f(x)-w)^2}\\
-    &= \sqrt{(x^2 - 2zx + z^2) + ((ax^2)^2 - 2 awx^2 + w^2)}\\
-    &= \sqrt{a^2x^4 + (1- 2 aw)x^2 +(- 2z)x + z^2 + w^2}\\
-  0 &\stackrel{!}{=} \Big(\big(d_{P, {f_2}}(x)\big)^2\Big)' \\
-    &= 4a^2x^3 + 2(1- 2 aw)x +(- 2z)\\
-    &= 2 \left (2a^2x^2 + (1- 2 aw) \right )x - 2z\\
-    \Leftrightarrow 0 &\stackrel{!}{=} (2a^2x^2  + (1- 2 aw)) x - z\\
-    &= 2 a^2 x^3 + (1- 2 aw) x - z\\
-\Leftrightarrow 0 &\stackrel{!}{=} x^3 + \underbrace{\frac{(1- 2 aw)}{2 a^2}}_{=: \alpha} x  + \underbrace{\frac{-z}{2 a^2}}_{=: \beta}\\
-    &= x^3 + \alpha x + \beta\label{eq:simple-cubic-equation-for-quadratic-distance}
-\end{align}
-
-The solution of Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
-is
-\[t := \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\]
-\[x = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}\]
-
-When you insert this in Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
-you get:\footnote{Remember: $(a-b)^3 = a^3-3 a^2 b+3 a b^2-b^3$}
-\allowdisplaybreaks
-\begin{align}
-    0 &\stackrel{!}{=} \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right )^3 + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
-&= (\frac{t}{\sqrt[3]{18}})^3 
-    - 3 (\frac{t}{\sqrt[3]{18}})^2 \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} 
-    + 3 (\frac{t}{\sqrt[3]{18}})(\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^2 
-    - (\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^3 
-    + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
-&= \frac{t^3}{18}             
-    - \frac{3t^2}{\sqrt[3]{18^2}} \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
-    + \frac{3t}{\sqrt[3]{18}} \frac{\sqrt[3]{\frac{4}{9}} \alpha^2 }{t^2} 
-    - \frac{\frac{2}{3} \alpha^3 }{t^3} 
-    + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
-&= \frac{t^3}{18}
-    - \frac{\sqrt[3]{18} t \alpha}{\sqrt[3]{18^2}}
-    + \frac{\sqrt[3]{12} \alpha^2}{\sqrt[3]{18} t}  
-    - \frac{\frac{2}{3} \alpha^3 }{t^3} 
-    + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
-&= \frac{t^3}{18} 
-    - \frac{t \alpha}{\sqrt[3]{18}} 
-    \color{red}+ \frac{\sqrt[3]{2} \alpha^2}{\sqrt[3]{3} t} \color{black}
-    - \frac{\frac{2}{3} \alpha^3 }{t^3} 
-    + \color{red}\alpha \color{black} \left (\frac{t}{\sqrt[3]{18}}  \color{red}- \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \color{black}\right ) 
-    + \beta\\
-&= \frac{t^3}{18} \color{blue}- \frac{t \alpha}{\sqrt[3]{18}} \color{black} 
-    - \frac{\frac{2}{3} \alpha^3 }{t^3} 
-    \color{blue}+ \frac{\alpha t}{\sqrt[3]{18}} \color{black} 
-    + \beta\\
-&= \frac{t^3}{18} - \frac{\frac{2}{3} \alpha^3 }{t^3} + \beta\\
-&= \frac{t^6 - 12 \alpha^3 + \beta 18 t^3}{18t^3}
-\end{align}
-
-Now only go on calculating with the numerator. Start with resubstituting
-$t$:
-\begin{align}
-0 &= (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta)^2 - 12 \alpha^3 + \beta 18 (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta)\\
-&= (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)})^2 +(9\beta)^2 - 12 \alpha^3 -18\cdot 9\beta^2\\
-&= 3 \cdot (4 \alpha^3 + 27 \beta^2) -81 \beta^2 - 12 \alpha^3\\
-&= (4 \alpha^3 + 27 \beta^2) -27 \beta^2 - 4 \alpha^3\\
-&= 0
-\end{align}
-
-\goodbreak
-So the solution is given by
-\begin{align*}
-x_S &:= - \frac{b}{2a} \;\;\;\;\; \text{(the symmetry axis)}\\
-w &:= y_P+\frac{b^2}{4a}-c \;\;\; \text{ and } \;\;\; z := x_P+\frac{b}{2a}\\
-\alpha &:= \frac{(1- 2 aw)}{2 a^2} \;\;\;\text{ and }\;\;\; \beta := \frac{-z}{2 a^2}\\
-t &:= \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\\
-\underset{x\in\mdr}{\arg \min d_{P,f}(x)} &= \begin{cases}
-     x_1 = +\sqrt{a (y_p + \frac{b^2}{4a} - c) - \frac{1}{2}} + x_S \text{ and }   &\text{if } x_P = x_S \text{ and } y_p + \frac{b^2}{4a} - c >  \frac{1}{2a} \\
-     x_2 = -\sqrt{a (y_p + \frac{b^2}{4a} - c) - \frac{1}{2}} + x_S\\
-     x_1 = x_S   &\text{if } x_P = x_S \text{ and } y_p + \frac{b^2}{4a} - c \leq  \frac{1}{2a} \\
-     x_1 = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}   &\text{if } x_P \neq x_S
-    \end{cases}
-\end{align*}
-
-\clearpage
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% Cubic                                                             %
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-\section{Minimal distance to a cubic function}
-Let $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ be a cubic function
-with $a \in \mdr \setminus \Set{0}$ and 
-$b, c, d \in \mdr$ be a function.
-
-\begin{figure}[htp]
-    \centering
-\begin{tikzpicture}
-    \begin{axis}[
-        legend pos=south east,
-        axis x line=middle,
-        axis y line=middle,
-        grid = major,
-        width=0.8\linewidth,
-        height=8cm,
-        grid style={dashed, gray!30},
-        xmin=-3, % start the diagram at this x-coordinate
-        xmax= 3, % end   the diagram at this x-coordinate
-        ymin=-3, % start the diagram at this y-coordinate
-        ymax= 3, % end   the diagram at this y-coordinate
-        axis background/.style={fill=white},
-        xlabel=$x$,
-        ylabel=$y$,
-        tick align=outside,
-        minor tick num=-3,
-        enlargelimits=true,
-        tension=0.08]
-      \addplot[domain=-3:3, thick,samples=50, red] {x*x*x}; 
-      \addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x*x};
-      \addplot[domain=-3:3, thick,samples=50, blue] {x*x*x+2*x*x};
-      \addplot[domain=-3:3, thick,samples=50, orange] {x*x*x+x}; 
-      \addlegendentry{$f_1(x)=x^3$}
-      \addlegendentry{$f_2(x)=x^3 + x^2$}
-      \addlegendentry{$f_2(x)=x^3 + 2 \cdot x^2$}
-      \addlegendentry{$f_1(x)=x^3 + x$}
-    \end{axis} 
-\end{tikzpicture}
-    \caption{Cubic functions}
-\end{figure}
-
-%
-%\subsection{Special points}
-%\todo[inline]{Write this}
-%
-%\subsection{Voronoi}
-%
-%For $b^2 \geq 3ac$
-%
-%\todo[inline]{Write this}
-
-\subsection{Calculate points with minimal distance}
-\begin{theorem}
-    There cannot be an algebraic solution to the problem of finding 
-    a closest point $(x, f(x))$ to a given point $P$ when $f$ is
-    a polynomial function of degree $3$ or higher.
-\end{theorem}
-
-\begin{proof}
-    Suppose you could solve the closest point problem for arbitrary
-    cubic functions $f = ax^3 + bx^2 + cx + d$ and arbitrary points $P = (x_P, y_P)$.
-
-    Then you could solve the following problem for $x$:
-    \begin{align}
-        0  &\stackrel{!}{=} \left ((d_{P,f}(x))^2 \right )'
-           &=-2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\
-           &= 2 f(x) \cdot f'(x) - 2 y_p f'(x) + 2x - 2 x_p\\
-           &= f(x) \cdot f'(x) - y_p f'(x) + x - x_p\\
-           &= \underbrace{f'(x) \cdot \left (f(x) - y_p \right )}_{\text{Polynomial of degree 5}} + x - x_p
-    \end{align}
-
-    General algebraic equations of degree 5 don't have a solution formula.\footnote{TODO: Quelle}
-    Although here seems to be more structure, the resulting algebraic
-    equation can be almost any polynomial of degree 5:\footnote{Thanks to Peter Košinár on \href{http://math.stackexchange.com/a/584814/6876}{math.stackexchange.com} for this one}
-
-    \begin{align}
-        0  &\stackrel{!}{=} f'(x) \cdot \left (f(x) - y_p \right ) + (x - x_p)\\
-        &= \underbrace{3 a^2}_{= \tilde{a}} x^5 + \underbrace{5ab}_{\tilde{b}}x^4 + \underbrace{2(2ac + b^2 )}_{=: \tilde{c}}x^3 &+& \underbrace{3(ad+bc-ay_p)}_{\tilde{d}} x^2 \\
-        & &+& \underbrace{(2 b d+c^2+1-2 b y_p)}_{=: \tilde{e}}x+\underbrace{c d-c y_p-x_p}_{=: \tilde{f}}\\
-        0 &\stackrel{!}{=} \tilde{a}x^5 + \tilde{b}x^4 + \tilde{c}x^3 + \tilde{d}x^2 + \tilde{e}x + \tilde{f}
-    \end{align}
-
-    \begin{enumerate}
-        \item For any coefficient $\tilde{a} \in \mdr_{> 0}$ of $x^5$ we can choose $a$ such that we get $\tilde{a}$.
-        \item For any coefficient $\tilde{b} \in \mdr \setminus \Set{0}$ of $x^4$ we can choose $b$ such that we get $\tilde{b}$.
-        \item With $c$, we can get any value of $\tilde{c} \in \mdr$.
-        \item With $d$, we can get any value of $\tilde{d} \in \mdr$.
-        \item With $y_p$, we can get any value of $\tilde{e} \in \mdr$.
-        \item With $x_p$, we can get any value of $\tilde{f} \in \mdr$.
-    \end{enumerate}
-
-    The first restriction guaratees that we have a polynomial of 
-    degree 5. The second one is necessary, to get a high range of
-    $\tilde{e}$.
-
-    This means, that there is no solution formula for the problem of 
-    finding the closest points on a cubic function to a given point,
-    because if there was one, you could use this formula for finding
-    roots of polynomials of degree 5. $\qed$
-\end{proof}
-
-
-\subsection{Another approach}
-\todo[inline]{Currently, this is only an idea. It might be usefull
-to move the cubic function $f$ such that $f$ is point symmetric
-to the origin. But I'm not sure how to make use of this symmetry.}
-Just like we moved the function $f$ and the point to get in a 
-nicer situation, we can apply this approach for cubic functions.
-
-\begin{figure}[htp]
-    \centering
-\begin{tikzpicture}
-    \begin{axis}[
-        legend pos=south east,
-        axis x line=middle,
-        axis y line=middle,
-        grid = major,
-        width=0.8\linewidth,
-        height=8cm,
-        grid style={dashed, gray!30},
-        xmin=-3, % start the diagram at this x-coordinate
-        xmax= 3, % end   the diagram at this x-coordinate
-        ymin=-3, % start the diagram at this y-coordinate
-        ymax= 3, % end   the diagram at this y-coordinate
-        axis background/.style={fill=white},
-        xlabel=$x$,
-        ylabel=$y$,
-        tick align=outside,
-        minor tick num=-3,
-        enlargelimits=true,
-        tension=0.08]
-      \addplot[domain=-3:3, thick,samples=50, red] {x*x*x}; 
-      \addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x};
-      \addplot[domain=-3:3, thick,samples=50, orange] {x*x*x-x}; 
-      \addplot[domain=-3:3, thick,samples=50, blue, dotted] {x*x*x+2*x};
-      \addplot[domain=-3:3, thick,samples=50, lime, dashed] {x*x*x+3*x};
-      \addlegendentry{$f_1(x)=x^3$}
-      \addlegendentry{$f_2(x)=x^3 + x$}
-      \addlegendentry{$f_1(x)=x^3 - x$}
-      \addlegendentry{$f_2(x)=x^3 + 2 \cdot x$}
-      \addlegendentry{$f_2(x)=x^3 + 3 \cdot x$}
-    \end{axis} 
-\end{tikzpicture}
-    \caption{Cubic functions with $b = d = 0$}
-\end{figure}
-
-First, we move $f_0$ by $\frac{b}{3a}$ to the right, so
-
-\[f_1(x) = ax^3 + \frac{b^2 (c-1)}{3a} x + \frac{2b^3}{27 a^2} - \frac{bc}{3a} + d \;\;\;\text{ and }\;\;\;P_1 = (x_P + \frac{b}{3a}, y_P)\]
-
-because
-
-\begin{align}
-    f_1(x) &= a \left (x - \frac{b}{3a} \right )^3 + b \left (x-\frac{b}{3a} \right )^2 + c \left (x-\frac{b}{3a} \right ) + d\\
-           &= a \left (x^3 - 3 \frac{b}{3a}x^2 + 3 (\frac{b}{3a})^2 x - \frac{b^3}{27a^3} \right )
-             +b \left (x^2 - \frac{2b}{3a} x + \frac{b^2}{9a^2} \right )
-             +c x - \frac{bc}{3a} + d\\
-            &= ax^3 - bx^2 + \frac{b^2}{3a}x - \frac{b^3}{27 a^2}\\
-            & \;\;\;\;\;\;+ bx^2 - \frac{2b^2}{3a}x + \frac{b^3}{9a^2}\\
-            & \;\;\;\;\;\;\;\;\;\;\;\; + c x - \frac{bc}{3a} + d\\
-            &= ax^3 + \frac{b^2}{3a}\left (1-2+c \right )x + \frac{b^3}{9a^2} \left (1-\frac{1}{3} \right )- \frac{bc}{3a} + d
-\end{align}
-
-\subsection{Number of points with minimal distance}
-As this leads to a polynomial of degree 5 of which we have to find
-roots, there cannot be more than 5 solutions.
-\todo[inline]{Can there be 3, 4 or even 5 solutions? Examples!
-
-After looking at function graphs of cubic functions, I'm pretty 
-sure that there cannot be 4 or 5 solutions, no matter how you 
-chose the cubic function $f$ and $P$.
-
-I'm also pretty sure that there is no polynomial (no matter what degree)
-that has more than 3 solutions.}
-
-
-\section{Interpolation and approximation}
-\subsection{Quadratic spline interpolation}
-You could interpolate the cubic function by a quadratic spline.
-
-\subsection{Bisection method}
-
-\subsection{Newtons method}
-One way to find roots of functions is Newtons method. It gives an
-iterative computation procedure that can converge quadratically 
-if some conditions are met:
-
-\begin{theorem}[local quadratic convergence of Newton's method]
-    Let $D \subseteq \mdr^n$ be open and $f: D \rightarrow \mdr^n \in C^2(\mdr)$.
-    Let $x^* \in D$ with $f(x^*) = 0$ and the Jaccobi-Matrix $f'(x^*)$
-    should not be invertable when evaluated at the root.
-
-    Then there is a sphere 
-    \[K := K_\rho(x^*) = \Set{x \in \mdr^n | \|x- x^*\|_\infty \leq \rho} \subseteq D\]
-    such that $x^*$ is the only root of $f$ in $K$. Furthermore,
-    the elements of the sequence
-    \[ x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}\]
-    are for every starting value $x_0 \in K$ again in $K$ and
-    \[\lim_{n \rightarrow \infty} x_k = x^*\]
-    Also, there is a constant $C > 0$ such that
-    \[\|x^* - x_{n+1} \| = C \|x^* - x_n\|^2 \text{ for } n \in \mathbb{N}_0\|\]
-\end{theorem}
-
-The approach is extraordinary simple. You choose a starting value
-$x_0$ and compute
-
-\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\]
-
-As soon as the values don't change much, you are close to a root.
-The problem of this approach is choosing a starting value that is
-close enough to the root. So we have to have a \enquote{good}
-initial guess.
-
-\subsection{Quadratic minimization}
-\todo[inline]{TODO}
-
-\section{Conclusion}
-\todo[inline]{TODO}
+\input{introduction}
+\tableofcontents
+
+\pagenumbering{arabic}
+\setcounter{page}{1}
+\input{problem-description.tex}
+\input{constant-functions.tex}
+\input{linear-functions.tex}
+\input{quadratic-functions.tex}
+\input{cubic-functions.tex}
 
 \end{document}

+ 21 - 0
documents/math-minimal-distance-to-cubic-function/problem-description.tex

@@ -0,0 +1,21 @@
+\chapter{Description of the Problem}
+Let $f: D \rightarrow \mdr$ with $D \subseteq \mdr$ be a polynomial function and $P \in \mdr^2$
+be a point. Let $d_{P,f}: \mdr \rightarrow \mdr_0^+$
+be the Euklidean distance of a point $P$ and a point $\left (x, f(x) \right )$
+on the graph of $f$:
+\[d_{P,f} (x) := \sqrt{(x_P - x)^2 + (y_P - f(x))^2}\]
+
+Now there is finite set $M = \Set{x_1, \dots, x_n} \subseteq D$ of minima for given $f$ and $P$:
+\[M = \Set{x \in D | d_{P,f}(x) = \min_{\overline{x} \in D} d_{P,f}(\overline{x})}\] 
+
+But minimizing $d_{P,f}$ is the same as minimizing $d_{P,f}^2$:
+\begin{align}
+    d_{P,f}(x)^2    &= \sqrt{(x_P - x)^2 + (y_P - f(x))^2}^2\\
+                &= x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2
+\end{align}
+
+\begin{theorem}[Fermat's theorem about stationary points]\label{thm:required-extremum-property}
+    Let $x_0$ be a local extremum of a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$.
+
+    Then: $f'(x_0) = 0$.
+\end{theorem}

+ 207 - 0
documents/math-minimal-distance-to-cubic-function/quadratic-functions.tex

@@ -0,0 +1,207 @@
+\chapter{Quadratic functions}
+\section{Defined on $\mdr$}
+Let $f(x) = a \cdot x^2 + b \cdot x + c$ with $a \in \mdr \setminus \Set{0}$ and 
+$b, c \in \mdr$ be a quadratic function.
+
+\begin{figure}[htp]
+    \centering
+\begin{tikzpicture}
+    \begin{axis}[
+        legend pos=north west,
+        axis x line=middle,
+        axis y line=middle,
+        grid = major,
+        width=0.8\linewidth,
+        height=8cm,
+        grid style={dashed, gray!30},
+        xmin=-3,    % start the diagram at this x-coordinate
+        xmax= 3,    % end   the diagram at this x-coordinate
+        ymin=-0.25, % start the diagram at this y-coordinate
+        ymax= 9,    % end   the diagram at this y-coordinate
+        axis background/.style={fill=white},
+        xlabel=$x$,
+        ylabel=$y$,
+        tick align=outside,
+        minor tick num=-3,
+        enlargelimits=true,
+        tension=0.08]
+      \addplot[domain=-3:3, thick,samples=50, red]    {0.5*x*x}; 
+      \addplot[domain=-3:3, thick,samples=50, green]  { x*x}; 
+      \addplot[domain=-3:3, thick,samples=50, blue]   { x*x +   x};
+      \addplot[domain=-3:3, thick,samples=50, orange,dotted] { x*x + 2*x};
+      \addplot[domain=-3:3, thick,samples=50, black,dashed]  {-x*x + 6};
+      \addlegendentry{$f_1(x)=\frac{1}{2}x^2$}
+      \addlegendentry{$f_2(x)=x^2$}
+      \addlegendentry{$f_3(x)=x^2+x$}
+      \addlegendentry{$f_4(x)=x^2+2x$}
+      \addlegendentry{$f_5(x)=-x^2+6$}
+    \end{axis} 
+\end{tikzpicture}
+    \caption{Quadratic functions}
+\end{figure}
+
+\subsection{Calculate points with minimal distance}
+In this case, $d_{P,f}^2$ is polynomial of degree 4. 
+We use Theorem~\ref{thm:required-extremum-property}:\nobreak
+\begin{align}
+    0     &\overset{!}{=} (d_{P,f}^2)'\\
+          &= -2 x_p + 2x -2y_p f'(x) + \left (f(x)^2 \right )'\\
+          &= -2 x_p + 2x -2y_p f'(x) + 2 f(x) \cdot f'(x) \rlap{\hspace*{3em}(chain rule)}\label{eq:minimizingFirstDerivative}\\
+\Leftrightarrow 0 &\overset{!}{=} -x_p + x -y_p f'(x) + f(x) \cdot f'(x) \rlap{\hspace*{3em}(divide by 2)}\label{eq:minimizingFirstDerivative}\\
+          &= -x_p + x -y_p (2ax+b) + (ax^2+bx+c)(2ax+b)\\
+          &= -x_p + x -y_p \cdot 2ax- y_p b + (2 a^2 x^3+2 a b x^2+2 a c x+ab x^2+b^2 x+bc)\\
+          &= -x_p + x -2y_p ax- y_p b + (2a^2 x^3 + 3 ab x^2 + 2acx + b^2 x + bc)\\
+          &= 2a^2 x^3 + 3 ab x^2 + (1 -2y_p a+ 2ac + b^2)x +(bc-by_p-x_p)\label{eq:quadratic-derivative-eq-0}
+\end{align}
+
+This is an algebraic equation of degree 3.
+There can be up to 3 solutions in such an equation. Those solutions
+can be found with a closed formula.
+
+\todo[inline]{Where are those closed formulas?}
+
+\begin{example}
+    Let $a = 1,  b = 0,  c= 1, x_p= 0, y_p = 1$.
+    So $f(x) = x^2 + 1$ and $P(0, 1)$.
+
+\begin{align}
+    0 &\stackrel{!}{=} 4 x^3 - 2x\\
+      &=2x(2x^2 - 1)\\
+    \Rightarrow x_1 &= 0 \;\;\; x_{2,3} = \pm \frac{1}{\sqrt{2}}
+\end{align}
+
+As you can easily verify, only $x_1$ is a minimum of $d_{P,f}$.
+\end{example}
+
+
+\subsection{Number of points with minimal distance}
+\begin{theorem}
+    A point $P$ has either one or two points on the graph of a 
+    quadratic function $f$ that are closest to $P$.
+\end{theorem}
+
+In the following, I will do some transformations with $f = f_0$ and
+$P = P_0$ .
+
+Moving $f_0$ and $P_0$ simultaneously in $x$ or $y$ direction does 
+not change the minimum distance. Furthermore, we can find the 
+points with minimum distance on the moved situation and calculate
+the minimum points in the original situation.
+
+First of all, we move $f_0$ and $P_0$ by $\frac{b}{2a}$ in $x$ direction, so
+\[f_1(x) = ax^2 - \frac{b^2}{4a} + c \;\;\;\text{ and }\;\;\; P_1 = \left (x_p+\frac{b}{2a},\;\; y_p \right )\]
+
+Because:\footnote{The idea why you subtract $\frac{b}{2a}$ within
+$f$ is that when you subtract something from $x$ before applying
+$f$ it takes more time ($x$ needs to be bigger) to get to the same
+situation. So to move the whole graph by $1$ to the left whe have
+to add $+1$.}
+\begin{align}
+    f(x-\nicefrac{b}{2a}) &= a (x-\nicefrac{b}{2a})^2 + b (x-\nicefrac{b}{2a}) + c\\
+    &= a (x^2 - \nicefrac{b}{a} x + \nicefrac{b^2}{4a^2}) + bx - \nicefrac{b^2}{2a} + c\\
+    &= ax^2 - bx + \nicefrac{b^2}{4a} + bx - \nicefrac{b^2}{2a} + c\\
+    &= ax^2 -\nicefrac{b^2}{4a} + c
+\end{align}
+
+
+Then move $f_1$ and $P_1$ by $\frac{b^2}{4a}-c$ in $y$ direction. You get:
+\[f_2(x) = ax^2\;\;\;\text{ and }\;\;\; P_2 = \Big (\underbrace{x_P+\frac{b}{2a}}_{=: z},\;\; \underbrace{y_P+\frac{b^2}{4a}-c}_{=: w} \Big )\]
+
+\textbf{Case 1:} As $f_2(x) = ax^2$ is symmetric to the $y$ axis, only points 
+$P = (0, w)$ could possilby have three minima.
+
+Then compute:
+\begin{align}
+  d_{P,{f_2}}(x)  &= \sqrt{(x-0)^2 + (f_2(x)-w)^2}\\
+    &= \sqrt{x^2 + (ax^2-w)^2}\\
+    &= \sqrt{x^2 + a^2 x^4-2aw x^2+w^2}\\
+    &= \sqrt{a^2 x^4 + (1-2aw) x^2 + w^2}\\
+    &= \sqrt{\left (a^2 x^2 + \frac{1-2 a w}{2} \right )^2 + w^2 - (1-2 a w)^2}\\
+    &= \sqrt{\left (a^2 x^2 + \nicefrac{1}{2}-a w \right )^2 + \big (w^2 - (1-2 a w)^2 \big)}
+\end{align}
+
+The term 
+\[a^2 x^2 + (\nicefrac{1}{2}-a w)\]
+should get as close to $0$ as possilbe when we want to minimize 
+$d_{P,{f_2}}$. For $w \leq \nicefrac{1}{2a}$ you only have $x = 0$ as a minimum.
+For all other points $P = (0, w)$, there are exactly two minima $x_{1,2} = \pm \sqrt{aw - \nicefrac{1}{2}}$.
+
+\textbf{Case 2:} $P = (z, w)$ is not on the symmetry axis, so $z \neq 0$. Then you compute:
+\begin{align}
+  d_{P,{f_2}}(x)  &= \sqrt{(x-z)^2 + (f(x)-w)^2}\\
+    &= \sqrt{(x^2 - 2zx + z^2) + ((ax^2)^2 - 2 awx^2 + w^2)}\\
+    &= \sqrt{a^2x^4 + (1- 2 aw)x^2 +(- 2z)x + z^2 + w^2}\\
+  0 &\stackrel{!}{=} \Big(\big(d_{P, {f_2}}(x)\big)^2\Big)' \\
+    &= 4a^2x^3 + 2(1- 2 aw)x +(- 2z)\\
+    &= 2 \left (2a^2x^2 + (1- 2 aw) \right )x - 2z\\
+    \Leftrightarrow 0 &\stackrel{!}{=} (2a^2x^2  + (1- 2 aw)) x - z\\
+    &= 2 a^2 x^3 + (1- 2 aw) x - z\\
+\Leftrightarrow 0 &\stackrel{!}{=} x^3 + \underbrace{\frac{(1- 2 aw)}{2 a^2}}_{=: \alpha} x  + \underbrace{\frac{-z}{2 a^2}}_{=: \beta}\\
+    &= x^3 + \alpha x + \beta\label{eq:simple-cubic-equation-for-quadratic-distance}
+\end{align}
+
+The solution of Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
+is
+\[t := \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\]
+\[x = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}\]
+
+When you insert this in Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
+you get:\footnote{Remember: $(a-b)^3 = a^3-3 a^2 b+3 a b^2-b^3$}
+\allowdisplaybreaks
+\begin{align}
+    0 &\stackrel{!}{=} \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right )^3 + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
+&= (\frac{t}{\sqrt[3]{18}})^3 
+    - 3 (\frac{t}{\sqrt[3]{18}})^2 \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} 
+    + 3 (\frac{t}{\sqrt[3]{18}})(\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^2 
+    - (\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^3 
+    + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
+&= \frac{t^3}{18}             
+    - \frac{3t^2}{\sqrt[3]{18^2}} \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
+    + \frac{3t}{\sqrt[3]{18}} \frac{\sqrt[3]{\frac{4}{9}} \alpha^2 }{t^2} 
+    - \frac{\frac{2}{3} \alpha^3 }{t^3} 
+    + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
+&= \frac{t^3}{18}
+    - \frac{\sqrt[3]{18} t \alpha}{\sqrt[3]{18^2}}
+    + \frac{\sqrt[3]{12} \alpha^2}{\sqrt[3]{18} t}  
+    - \frac{\frac{2}{3} \alpha^3 }{t^3} 
+    + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
+&= \frac{t^3}{18} 
+    - \frac{t \alpha}{\sqrt[3]{18}} 
+    \color{red}+ \frac{\sqrt[3]{2} \alpha^2}{\sqrt[3]{3} t} \color{black}
+    - \frac{\frac{2}{3} \alpha^3 }{t^3} 
+    + \color{red}\alpha \color{black} \left (\frac{t}{\sqrt[3]{18}}  \color{red}- \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \color{black}\right ) 
+    + \beta\\
+&= \frac{t^3}{18} \color{blue}- \frac{t \alpha}{\sqrt[3]{18}} \color{black} 
+    - \frac{\frac{2}{3} \alpha^3 }{t^3} 
+    \color{blue}+ \frac{\alpha t}{\sqrt[3]{18}} \color{black} 
+    + \beta\\
+&= \frac{t^3}{18} - \frac{\frac{2}{3} \alpha^3 }{t^3} + \beta\\
+&= \frac{t^6 - 12 \alpha^3 + \beta 18 t^3}{18t^3}
+\end{align}
+
+Now only go on calculating with the numerator. Start with resubstituting
+$t$:
+\begin{align}
+0 &= (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta)^2 - 12 \alpha^3 + \beta 18 (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta)\\
+&= (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)})^2 +(9\beta)^2 - 12 \alpha^3 -18\cdot 9\beta^2\\
+&= 3 \cdot (4 \alpha^3 + 27 \beta^2) -81 \beta^2 - 12 \alpha^3\\
+&= (4 \alpha^3 + 27 \beta^2) -27 \beta^2 - 4 \alpha^3\\
+&= 0
+\end{align}
+
+\goodbreak
+So the solution is given by
+\begin{align*}
+x_S &:= - \frac{b}{2a} \;\;\;\;\; \text{(the symmetry axis)}\\
+w &:= y_P+\frac{b^2}{4a}-c \;\;\; \text{ and } \;\;\; z := x_P+\frac{b}{2a}\\
+\alpha &:= \frac{(1- 2 aw)}{2 a^2} \;\;\;\text{ and }\;\;\; \beta := \frac{-z}{2 a^2}\\
+t &:= \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\\
+\underset{x\in\mdr}{\arg \min d_{P,f}(x)} &= \begin{cases}
+     x_1 = +\sqrt{a (y_p + \frac{b^2}{4a} - c) - \frac{1}{2}} + x_S \text{ and }   &\text{if } x_P = x_S \text{ and } y_p + \frac{b^2}{4a} - c >  \frac{1}{2a} \\
+     x_2 = -\sqrt{a (y_p + \frac{b^2}{4a} - c) - \frac{1}{2}} + x_S\\
+     x_1 = x_S   &\text{if } x_P = x_S \text{ and } y_p + \frac{b^2}{4a} - c \leq  \frac{1}{2a} \\
+     x_1 = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}   &\text{if } x_P \neq x_S
+    \end{cases}
+\end{align*}
+
+\section{Defined on a closed interval of $\mdr$}