|
@@ -17,3 +17,35 @@
|
|
|
\item[\xmark] Total number of links on the source page matters
|
|
|
\end{itemize}
|
|
|
\end{frame}
|
|
|
+
|
|
|
+\begin{frame}{Mathematics}
|
|
|
+ Let $x$ be a web page. Then
|
|
|
+ \begin{itemize}
|
|
|
+ \item $L(x)$ is the set of Websites that link to $x$
|
|
|
+ \item $C(y)$ is the out-degree of page $y$
|
|
|
+ \item $\alpha$ is probability of random jump
|
|
|
+ \item $N$ is the total number of websites
|
|
|
+ \end{itemize}
|
|
|
+
|
|
|
+ \[\displaystyle PR(x) := \alpha \left ( \frac{1}{N} \right ) + (1-\alpha) \sum_{y\in L(x)} \frac{PR(y)}{C_{y}}\]
|
|
|
+\end{frame}
|
|
|
+
|
|
|
+\begin{frame}{Pseudocode}
|
|
|
+ \begin{algorithmic}
|
|
|
+\alertline<1> \Function{PageRank}{Graph $web$, double $q=0.15$, int $iterations$} %q is a damping factor
|
|
|
+\alertline<2> \ForAll{$page \in G$}
|
|
|
+\alertline<3> \State $page.pageRank = \frac{1}{|G|}$ \Comment{intial probability}
|
|
|
+\alertline<2> \EndFor
|
|
|
+
|
|
|
+\alertline<4> \While{$iterations > 0$}
|
|
|
+\alertline<5> \ForAll{$page \in G$} \Comment{calculate pageRank of $page$}
|
|
|
+\alertline<6> \State $page.pageRank = q$
|
|
|
+\alertline<7> \ForAll{$y \in L(page)$}
|
|
|
+\alertline<8> \State $page.pageRank$ += $\frac{y.pageRank}{C(y)}$
|
|
|
+\alertline<7> \EndFor
|
|
|
+\alertline<5> \EndFor
|
|
|
+\alertline<4> \State $iterations$ -= $1$
|
|
|
+\alertline<4> \EndWhile
|
|
|
+\alertline<1> \EndFunction
|
|
|
+ \end{algorithmic}
|
|
|
+\end{frame}
|