Jelajahi Sumber

added section about Elementarteiler

Martin Thoma 12 tahun lalu
induk
melakukan
3b2bfde37a
2 mengubah file dengan 12 tambahan dan 1 penghapusan
  1. TEMPAT SAMPAH
      documents/eaz/eaz.pdf
  2. 12 1
      documents/eaz/eaz.tex

TEMPAT SAMPAH
documents/eaz/eaz.pdf


+ 12 - 1
documents/eaz/eaz.tex

@@ -215,6 +215,17 @@ Es sein $p \geq 3$ eine Primzahl. Für $a \in \mathbb{Z}$ sei
 	\item $F$ ist ein Restklassenkörper des Polynomrings $\mathbb{F}_p [X]$
 \end{itemize}
 
+\section*{Elementarteiler}
+Will man die Elementarteiler einer Matrix $M$ berechnen, so gilt:
+\begin{itemize}
+	\item $e_1$ ist ggT aller Matrixeinträge
+	\item $\prod_{i=1}^r e_i = |\det(M)|$
+\end{itemize}
+
 \section*{Weiteres}
-In alten Klausuren begegnen uns desöfteren Ringe der Form ZZ adjungiert Wurzel aus d -- in diesem Zusammenhang begegnet uns die Normabbildung. (Ein Beispiel, das in der Vorlesung gesehen wurde, waren die gauß'schen Zahlen.) Wie können wir die Norm dafür benutzen, um Zerlegungen von Elementen zu finden oder deren Unzerlegbarkeit zu zeigen?
+In alten Klausuren begegnen uns desöfteren Ringe der Form $Z[\sqrt{d}]$. 
+In diesem Zusammenhang begegnet uns die Normabbildung. 
+(Ein Beispiel, das in der Vorlesung gesehen wurde, waren die gauß'schen Zahlen.)
+
+Wie können wir die Norm dafür benutzen, um Zerlegungen von Elementen zu finden oder deren Unzerlegbarkeit zu zeigen?
 \end{document}