Kaynağa Gözat

added section about Elementarteiler

Martin Thoma 12 yıl önce
ebeveyn
işleme
3b2bfde37a
2 değiştirilmiş dosya ile 12 ekleme ve 1 silme
  1. BIN
      documents/eaz/eaz.pdf
  2. 12 1
      documents/eaz/eaz.tex

BIN
documents/eaz/eaz.pdf


+ 12 - 1
documents/eaz/eaz.tex

@@ -215,6 +215,17 @@ Es sein $p \geq 3$ eine Primzahl. Für $a \in \mathbb{Z}$ sei
 	\item $F$ ist ein Restklassenkörper des Polynomrings $\mathbb{F}_p [X]$
 \end{itemize}
 
+\section*{Elementarteiler}
+Will man die Elementarteiler einer Matrix $M$ berechnen, so gilt:
+\begin{itemize}
+	\item $e_1$ ist ggT aller Matrixeinträge
+	\item $\prod_{i=1}^r e_i = |\det(M)|$
+\end{itemize}
+
 \section*{Weiteres}
-In alten Klausuren begegnen uns desöfteren Ringe der Form ZZ adjungiert Wurzel aus d -- in diesem Zusammenhang begegnet uns die Normabbildung. (Ein Beispiel, das in der Vorlesung gesehen wurde, waren die gauß'schen Zahlen.) Wie können wir die Norm dafür benutzen, um Zerlegungen von Elementen zu finden oder deren Unzerlegbarkeit zu zeigen?
+In alten Klausuren begegnen uns desöfteren Ringe der Form $Z[\sqrt{d}]$. 
+In diesem Zusammenhang begegnet uns die Normabbildung. 
+(Ein Beispiel, das in der Vorlesung gesehen wurde, waren die gauß'schen Zahlen.)
+
+Wie können wir die Norm dafür benutzen, um Zerlegungen von Elementen zu finden oder deren Unzerlegbarkeit zu zeigen?
 \end{document}