浏览代码

added section about Elementarteiler

Martin Thoma 12 年之前
父节点
当前提交
3b2bfde37a
共有 2 个文件被更改,包括 12 次插入1 次删除
  1. 二进制
      documents/eaz/eaz.pdf
  2. 12 1
      documents/eaz/eaz.tex

二进制
documents/eaz/eaz.pdf


+ 12 - 1
documents/eaz/eaz.tex

@@ -215,6 +215,17 @@ Es sein $p \geq 3$ eine Primzahl. Für $a \in \mathbb{Z}$ sei
 	\item $F$ ist ein Restklassenkörper des Polynomrings $\mathbb{F}_p [X]$
 \end{itemize}
 
+\section*{Elementarteiler}
+Will man die Elementarteiler einer Matrix $M$ berechnen, so gilt:
+\begin{itemize}
+	\item $e_1$ ist ggT aller Matrixeinträge
+	\item $\prod_{i=1}^r e_i = |\det(M)|$
+\end{itemize}
+
 \section*{Weiteres}
-In alten Klausuren begegnen uns desöfteren Ringe der Form ZZ adjungiert Wurzel aus d -- in diesem Zusammenhang begegnet uns die Normabbildung. (Ein Beispiel, das in der Vorlesung gesehen wurde, waren die gauß'schen Zahlen.) Wie können wir die Norm dafür benutzen, um Zerlegungen von Elementen zu finden oder deren Unzerlegbarkeit zu zeigen?
+In alten Klausuren begegnen uns desöfteren Ringe der Form $Z[\sqrt{d}]$. 
+In diesem Zusammenhang begegnet uns die Normabbildung. 
+(Ein Beispiel, das in der Vorlesung gesehen wurde, waren die gauß'schen Zahlen.)
+
+Wie können wir die Norm dafür benutzen, um Zerlegungen von Elementen zu finden oder deren Unzerlegbarkeit zu zeigen?
 \end{document}