|
@@ -354,30 +354,61 @@ is
|
|
|
\[t := \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\]
|
|
|
\[x = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}\]
|
|
|
|
|
|
-When you insert is in Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
|
|
|
-you get:
|
|
|
-
|
|
|
+When you insert this in Equation~\ref{eq:simple-cubic-equation-for-quadratic-distance}
|
|
|
+you get:\footnote{Remember: $(a-b)^3 = a^3-3 a^2 b+3 a b^2-b^3$}
|
|
|
+\allowdisplaybreaks
|
|
|
\begin{align}
|
|
|
- 0 &= \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right )^3 + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
|
|
-&= (\frac{t}{\sqrt[3]{18}})^3 - 3 (\frac{t}{\sqrt[3]{18}})^2 \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} + 3 (\frac{t}{\sqrt[3]{18}})(\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^2 + (\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^3 + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
|
|
-&= \frac{t^3}{18} - \frac{3t^2}{\sqrt[3]{18^2}} \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} + \frac{3t}{\sqrt[3]{18}} \frac{\sqrt[3]{\frac{4}{9}} \alpha^2 }{t^2} + \frac{\frac{2}{3} \alpha^3 }{t^3} + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
|
|
-&= \frac{t^3}{18} - \frac{\sqrt[3]{18} t \alpha}{\sqrt[3]{18^2}} + \frac{\sqrt[3]{12} \alpha^2}{\sqrt[3]{18} t} + \frac{\frac{2}{3} \alpha^3 }{t^3} + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
|
|
-&= \frac{t^3}{18} - \frac{t \alpha}{\sqrt[3]{18}} + \frac{\sqrt[3]{2} \alpha^2}{\sqrt[3]{3} t} + \frac{\frac{2}{3} \alpha^3 }{t^3} + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
|
|
-&= \frac{t^3}{18} - \frac{t \alpha}{\sqrt[3]{18}} + \frac{\frac{2}{3} \alpha^3 }{t^3} + \frac{\alpha t}{\sqrt[3]{18}} + \beta\\
|
|
|
-&= \frac{t^3}{18} + \frac{\frac{2}{3} \alpha^3 }{t^3} + \beta\\
|
|
|
+ 0 &\stackrel{!}{=} \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right )^3 + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
|
|
+&= (\frac{t}{\sqrt[3]{18}})^3
|
|
|
+ - 3 (\frac{t}{\sqrt[3]{18}})^2 \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
|
|
|
+ + 3 (\frac{t}{\sqrt[3]{18}})(\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^2
|
|
|
+ - (\frac{\sqrt[3]{\frac{2}{3}} \alpha }{t})^3
|
|
|
+ + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
|
|
+&= \frac{t^3}{18}
|
|
|
+ - \frac{3t^2}{\sqrt[3]{18^2}} \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t}
|
|
|
+ + \frac{3t}{\sqrt[3]{18}} \frac{\sqrt[3]{\frac{4}{9}} \alpha^2 }{t^2}
|
|
|
+ - \frac{\frac{2}{3} \alpha^3 }{t^3}
|
|
|
+ + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
|
|
+&= \frac{t^3}{18}
|
|
|
+ - \frac{\sqrt[3]{18} t \alpha}{\sqrt[3]{18^2}}
|
|
|
+ + \frac{\sqrt[3]{12} \alpha^2}{\sqrt[3]{18} t}
|
|
|
+ - \frac{\frac{2}{3} \alpha^3 }{t^3}
|
|
|
+ + \alpha \left (\frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \right ) + \beta\\
|
|
|
+&= \frac{t^3}{18}
|
|
|
+ - \frac{t \alpha}{\sqrt[3]{18}}
|
|
|
+ \color{red}+ \frac{\sqrt[3]{2} \alpha^2}{\sqrt[3]{3} t} \color{black}
|
|
|
+ - \frac{\frac{2}{3} \alpha^3 }{t^3}
|
|
|
+ + \color{red}\alpha \color{black} \left (\frac{t}{\sqrt[3]{18}} \color{red}- \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} \color{black}\right )
|
|
|
+ + \beta\\
|
|
|
+&= \frac{t^3}{18} \color{blue}- \frac{t \alpha}{\sqrt[3]{18}} \color{black}
|
|
|
+ - \frac{\frac{2}{3} \alpha^3 }{t^3}
|
|
|
+ \color{blue}+ \frac{\alpha t}{\sqrt[3]{18}} \color{black}
|
|
|
+ + \beta\\
|
|
|
+&= \frac{t^3}{18} - \frac{\frac{2}{3} \alpha^3 }{t^3} + \beta\\
|
|
|
+&= \frac{t^6 - 12 \alpha^3 + \beta 18 t^3}{18t^3}
|
|
|
\end{align}
|
|
|
-\todo[inline]{verify this solution}
|
|
|
|
|
|
+Now only go on calculating with the numerator. Start with resubstituting
|
|
|
+$t$:
|
|
|
+\begin{align}
|
|
|
+0 &= (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta)^2 - 12 \alpha^3 + \beta 18 (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta)\\
|
|
|
+&= (\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)})^2 +(9\beta)^2 - 12 \alpha^3 -18\cdot 9\beta^2\\
|
|
|
+&= 3 \cdot (4 \alpha^3 + 27 \beta^2) -81 \beta^2 - 12 \alpha^3\\
|
|
|
+&= (4 \alpha^3 + 27 \beta^2) -27 \beta^2 - 4 \alpha^3\\
|
|
|
+&= 0
|
|
|
+\end{align}
|
|
|
|
|
|
\goodbreak
|
|
|
So the solution is given by
|
|
|
\begin{align*}
|
|
|
x_S &:= - \frac{b}{2a} \;\;\;\;\; \text{(the symmetry axis)}\\
|
|
|
+w &:= y_P+\frac{b^2}{4a}-c \;\;\; \text{ and } \;\;\; \alpha := \frac{(1- 2 aw)}{2 a^2} \;\;\;\text{ and }\;\;\; \beta := \frac{-z}{2 a^2}\\
|
|
|
+t &:= \sqrt[3]{\sqrt{3 \cdot (4 \alpha^3 + 27 \beta^2)} -9\beta}\\
|
|
|
\underset{x\in\mdr}{\arg \min d_{P,f}(x)} &= \begin{cases}
|
|
|
x_1 = +\sqrt{a (y_p + \frac{b^2}{4a} - c) - \frac{1}{2}} + x_S \text{ and } &\text{if } x_P = x_S \text{ and } y_p + \frac{b^2}{4a} - c > \frac{1}{2a} \\
|
|
|
x_2 = -\sqrt{a (y_p + \frac{b^2}{4a} - c) - \frac{1}{2}} + x_S\\
|
|
|
x_1 = x_S &\text{if } x_P = x_S \text{ and } y_p + \frac{b^2}{4a} - c \leq \frac{1}{2a} \\
|
|
|
- x_1 = todo &\text{if } x_P \neq x_S
|
|
|
+ x_1 = \frac{t}{\sqrt[3]{18}} - \frac{\sqrt[3]{\frac{2}{3}} \alpha }{t} &\text{if } x_P \neq x_S
|
|
|
\end{cases}
|
|
|
\end{align*}
|
|
|
|