|
@@ -0,0 +1,50 @@
|
|
|
|
+\documentclass{article}
|
|
|
|
+\usepackage[pdftex,active,tightpage]{preview}
|
|
|
|
+\setlength\PreviewBorder{2mm}
|
|
|
|
+
|
|
|
|
+\usepackage[utf8]{inputenc} % this is needed for umlauts
|
|
|
|
+\usepackage[ngerman]{babel} % this is needed for umlauts
|
|
|
|
+\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
|
|
|
+\usepackage{amssymb,amsmath,amsfonts} % nice math rendering
|
|
|
|
+\usepackage{braket} % needed for \Set
|
|
|
|
+\usepackage{caption}
|
|
|
|
+\usepackage{algorithm}
|
|
|
|
+\usepackage[noend]{algpseudocode}
|
|
|
|
+
|
|
|
|
+\DeclareCaptionFormat{myformat}{#3}
|
|
|
|
+\captionsetup[algorithm]{format=myformat}
|
|
|
|
+
|
|
|
|
+\begin{document}
|
|
|
|
+\begin{preview}
|
|
|
|
+ \begin{algorithm}[H]
|
|
|
|
+ \begin{algorithmic}
|
|
|
|
+ \Require
|
|
|
|
+ \Statex Sates $\mathcal{X} = \{1, \dots, n_x\}$
|
|
|
|
+ \Statex Actions $\mathcal{A} = \{1, \dots, n_a\},\qquad A: \mathcal{X} \Rightarrow \mathcal{A}$
|
|
|
|
+ \Statex Reward function $R: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$
|
|
|
|
+ \Statex Black-box (probabilistic) transition function $T: \mathcal{X} \times \mathcal{A} \rightarrow \mathcal{X}$
|
|
|
|
+ \Statex Learning rate $\alpha \in [0, 1]$, typically $\alpha = 0.1$
|
|
|
|
+ \Statex Discounting factor $\gamma \in [0, 1]$
|
|
|
|
+ \Statex $\lambda \in [0, 1]$: Trade-off between TD and MC
|
|
|
|
+ \Procedure{SARSA}{$\mathcal{X}$, $A$, $R$, $T$, $\alpha$, $\gamma$, $\lambda$}
|
|
|
|
+ \State Initialize $Q: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$ arbitrarily
|
|
|
|
+ \While{$Q$ is not converged}
|
|
|
|
+ \State Select $(s, a) \in \mathcal{X} \times \mathcal{A}$ arbitrarily
|
|
|
|
+ \While{$s$ is not terminal}
|
|
|
|
+ \State $r \gets R(s, a)$ \Comment{Receive the reward}
|
|
|
|
+ \State $s' \gets T(s, a)$ \Comment{Receive the new state}
|
|
|
|
+ \State Calculate $\pi$ based on $Q$ (e.g. epsilon-greedy)
|
|
|
|
+ \State $a' \gets \pi(s')$
|
|
|
|
+ \State $Q(s, a) \gets (1 - \alpha ) \cdot Q(s, a) + \alpha \cdot (r + \gamma Q(s', a'))$
|
|
|
|
+ \State $s \gets s'$
|
|
|
|
+ \State $a \gets a'$
|
|
|
|
+ \EndWhile
|
|
|
|
+ \EndWhile
|
|
|
|
+ \Return $Q$
|
|
|
|
+ \EndProcedure
|
|
|
|
+ \end{algorithmic}
|
|
|
|
+ \caption{SARSA: Learn function $Q: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$}
|
|
|
|
+ \label{alg:sarsa}
|
|
|
|
+ \end{algorithm}
|
|
|
|
+\end{preview}
|
|
|
|
+\end{document}
|