|
@@ -18,7 +18,7 @@
|
|
|
/Keywords (Analysis I; Formeln)
|
|
|
}
|
|
|
|
|
|
-\everymath={\displaystyle}
|
|
|
+%\everymath={\displaystyle}
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
@@ -65,14 +65,11 @@ e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} \\
|
|
|
(x + y)^n &= \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k
|
|
|
\end{align*}
|
|
|
|
|
|
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
\section{Ableitungen}
|
|
|
-
|
|
|
-\begin{align*}
|
|
|
- (\log x)' &= \frac{1}{x}
|
|
|
-\end{align*}
|
|
|
-
|
|
|
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
\begin{table}[ht]
|
|
|
-\begin{minipage}[b]{0.5\linewidth}\centering
|
|
|
+\begin{minipage}[b]{0.3\linewidth}\centering
|
|
|
\begin{align*}
|
|
|
(\sin x)' &= \cos x \\
|
|
|
(\cos x)' &= -\sin x \\
|
|
@@ -82,8 +79,8 @@ e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} \\
|
|
|
\end{align*}
|
|
|
|
|
|
\end{minipage}
|
|
|
-\hspace{0.5cm}
|
|
|
-\begin{minipage}[b]{0.5\linewidth}
|
|
|
+\hspace{0.1cm}
|
|
|
+\begin{minipage}[b]{0.3\linewidth}
|
|
|
\centering
|
|
|
|
|
|
\begin{align*}
|
|
@@ -94,14 +91,23 @@ e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} \\
|
|
|
% (\arccosh x)' &= \frac {1}{\sqrt{(1-x^2) \cdot (1+x^2)}} \\
|
|
|
% (\arctanh x)' &= \frac {1}{1 - x^2}
|
|
|
\end{align*}
|
|
|
-
|
|
|
+\end{minipage}
|
|
|
+\hspace{0.1cm}
|
|
|
+\begin{minipage}[b]{0.3\linewidth}
|
|
|
+\centering
|
|
|
+\begin{align*}
|
|
|
+ (\log x)' &= \frac{1}{x} \\
|
|
|
+\end{align*}
|
|
|
\end{minipage}
|
|
|
\end{table}
|
|
|
|
|
|
-\section{Potenzreihen}
|
|
|
-Zuerst den Potenzradius r berechnen:
|
|
|
-\(
|
|
|
- r = \frac {1}{\lim \text{sup} \sqrt[n]{|a_n|}}
|
|
|
-\)
|
|
|
+\section{Werte}
|
|
|
+\begin{table}[h]
|
|
|
+ \centering
|
|
|
+ \begin{tabular}{llll}
|
|
|
+ \(\arctan(0) = 0\) & \(\sin(0) = 0\) & \(\cos(0) = 1\) \\
|
|
|
+ \(\arctan(1) = \frac{\pi}{4}\) & \(\sin(\frac{\pi}{2}) = 1\) & \(\cos(\frac{\pi}{2}) = 0\)\\
|
|
|
+ \end{tabular}
|
|
|
+\end{table}
|
|
|
|
|
|
\end{document}
|