|
@@ -45,7 +45,40 @@ Now there is finite set of points $x_1, \dots, x_n$ such that
|
|
\section{Minimal distance to a constant function}
|
|
\section{Minimal distance to a constant function}
|
|
Let $f(x) = c$ with $c \in \mdr$ be a function.
|
|
Let $f(x) = c$ with $c \in \mdr$ be a function.
|
|
|
|
|
|
-\todo[inline]{add image}
|
|
|
|
|
|
+\begin{figure}[htp]
|
|
|
|
+ \centering
|
|
|
|
+ \begin{tikzpicture}
|
|
|
|
+ \begin{axis}[
|
|
|
|
+ legend pos=north west,
|
|
|
|
+ axis x line=middle,
|
|
|
|
+ axis y line=middle,
|
|
|
|
+ grid = major,
|
|
|
|
+ width=0.8\linewidth,
|
|
|
|
+ height=8cm,
|
|
|
|
+ grid style={dashed, gray!30},
|
|
|
|
+ xmin=-5, % start the diagram at this x-coordinate
|
|
|
|
+ xmax= 5, % end the diagram at this x-coordinate
|
|
|
|
+ ymin= 0, % start the diagram at this y-coordinate
|
|
|
|
+ ymax= 3, % end the diagram at this y-coordinate
|
|
|
|
+ axis background/.style={fill=white},
|
|
|
|
+ xlabel=$x$,
|
|
|
|
+ ylabel=$y$,
|
|
|
|
+ tick align=outside,
|
|
|
|
+ minor tick num=-3,
|
|
|
|
+ enlargelimits=true,
|
|
|
|
+ tension=0.08]
|
|
|
|
+ \addplot[domain=-5:5, thick,samples=50, red] {1};
|
|
|
|
+ \addplot[domain=-5:5, thick,samples=50, green] {2};
|
|
|
|
+ \addplot[domain=-5:5, thick,samples=50, blue] {3};
|
|
|
|
+ \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
|
|
|
|
+ \draw[thick, dashed] (axis cs:2,0) -- (axis cs:2,3);
|
|
|
|
+ \addlegendentry{$f(x)=1$}
|
|
|
|
+ \addlegendentry{$g(x)=2$}
|
|
|
|
+ \addlegendentry{$h(x)=3$}
|
|
|
|
+ \end{axis}
|
|
|
|
+ \end{tikzpicture}
|
|
|
|
+ \caption{3 constant functions}
|
|
|
|
+\end{figure}
|
|
|
|
|
|
Then $(x_P,f(x_P))$ has
|
|
Then $(x_P,f(x_P))$ has
|
|
minimal distance to $P$. Every other point has higher distance.
|
|
minimal distance to $P$. Every other point has higher distance.
|
|
@@ -54,7 +87,37 @@ minimal distance to $P$. Every other point has higher distance.
|
|
Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
|
|
Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
|
|
$t \in \mdr$ be a function.
|
|
$t \in \mdr$ be a function.
|
|
|
|
|
|
-\todo[inline]{add image}
|
|
|
|
|
|
+\begin{figure}[htp]
|
|
|
|
+ \centering
|
|
|
|
+ \begin{tikzpicture}
|
|
|
|
+ \begin{axis}[
|
|
|
|
+ legend pos=north east,
|
|
|
|
+ axis x line=middle,
|
|
|
|
+ axis y line=middle,
|
|
|
|
+ grid = major,
|
|
|
|
+ width=0.8\linewidth,
|
|
|
|
+ height=8cm,
|
|
|
|
+ grid style={dashed, gray!30},
|
|
|
|
+ xmin= 0, % start the diagram at this x-coordinate
|
|
|
|
+ xmax= 5, % end the diagram at this x-coordinate
|
|
|
|
+ ymin= 0, % start the diagram at this y-coordinate
|
|
|
|
+ ymax= 3, % end the diagram at this y-coordinate
|
|
|
|
+ axis background/.style={fill=white},
|
|
|
|
+ xlabel=$x$,
|
|
|
|
+ ylabel=$y$,
|
|
|
|
+ tick align=outside,
|
|
|
|
+ minor tick num=-3,
|
|
|
|
+ enlargelimits=true,
|
|
|
|
+ tension=0.08]
|
|
|
|
+ \addplot[domain=-5:5, thick,samples=50, red] {0.5*x};
|
|
|
|
+ \addplot[domain=-5:5, thick,samples=50, blue] {-2*x+6};
|
|
|
|
+ \addplot[black, mark = *, nodes near coords=$P$,every node near coord/.style={anchor=225}] coordinates {(2, 2)};
|
|
|
|
+ \addlegendentry{$f(x)=\frac{1}{2}x$}
|
|
|
|
+ \addlegendentry{$g(x)=-2x+6$}
|
|
|
|
+ \end{axis}
|
|
|
|
+ \end{tikzpicture}
|
|
|
|
+ \caption{The shortest distance of $P$ to $f$ can be calculated by using the perpendicular}
|
|
|
|
+\end{figure}
|
|
|
|
|
|
Now you can drop a perpendicular through $P$ on $f(x)$. The slope $f_\bot$
|
|
Now you can drop a perpendicular through $P$ on $f(x)$. The slope $f_\bot$
|
|
of the perpendicular is $- \frac{1}{m}$. Then:
|
|
of the perpendicular is $- \frac{1}{m}$. Then:
|
|
@@ -70,6 +133,7 @@ of the perpendicular is $- \frac{1}{m}$. Then:
|
|
\end{align}
|
|
\end{align}
|
|
|
|
|
|
There is only one point with minimal distance.
|
|
There is only one point with minimal distance.
|
|
|
|
+\clearpage
|
|
|
|
|
|
\section{Minimal distance to a quadratic function}
|
|
\section{Minimal distance to a quadratic function}
|
|
Let $f(x) = a \cdot x^2 + b \cdot x + c$ with $a \in \mdr \setminus \Set{0}$ and
|
|
Let $f(x) = a \cdot x^2 + b \cdot x + c$ with $a \in \mdr \setminus \Set{0}$ and
|
|
@@ -126,47 +190,58 @@ But can there be three points?
|
|
|
|
|
|
\begin{figure}[htp]
|
|
\begin{figure}[htp]
|
|
\centering
|
|
\centering
|
|
-\begin{tikzpicture}
|
|
|
|
- \begin{axis}[
|
|
|
|
- legend pos=north west,
|
|
|
|
- axis x line=middle,
|
|
|
|
- axis y line=middle,
|
|
|
|
- grid = major,
|
|
|
|
- width=0.8\linewidth,
|
|
|
|
- height=8cm,
|
|
|
|
- grid style={dashed, gray!30},
|
|
|
|
- xmin=-0.7, % start the diagram at this x-coordinate
|
|
|
|
- xmax= 0.7, % end the diagram at this x-coordinate
|
|
|
|
- ymin=-0.25, % start the diagram at this y-coordinate
|
|
|
|
- ymax= 0.5, % end the diagram at this y-coordinate
|
|
|
|
- axis background/.style={fill=white},
|
|
|
|
- xlabel=$x$,
|
|
|
|
- ylabel=$y$,
|
|
|
|
- %xticklabels={-2,-1.6,...,7},
|
|
|
|
- %yticklabels={-8,-7,...,8},
|
|
|
|
- tick align=outside,
|
|
|
|
- minor tick num=-3,
|
|
|
|
- enlargelimits=true,
|
|
|
|
- tension=0.08]
|
|
|
|
- \addplot[domain=-0.7:0.7, thick,samples=50, orange] {x*x};
|
|
|
|
- \draw (axis cs:0,0.5) circle[radius=0.5];
|
|
|
|
- \draw[red, thick] (axis cs:0,0.5) -- (axis cs:0.101,0.0102);
|
|
|
|
- \draw[red, thick] (axis cs:0,0.5) -- (axis cs:-0.101,0.0102);
|
|
|
|
- \draw[red, thick] (axis cs:0,0.5) -- (axis cs:0,0);
|
|
|
|
- \addlegendentry{$f(x)=x^2$}
|
|
|
|
- \end{axis}
|
|
|
|
-\end{tikzpicture}
|
|
|
|
|
|
+ \begin{tikzpicture}
|
|
|
|
+ \begin{axis}[
|
|
|
|
+ legend pos=north west,
|
|
|
|
+ axis x line=middle,
|
|
|
|
+ axis y line=middle,
|
|
|
|
+ grid = major,
|
|
|
|
+ width=0.8\linewidth,
|
|
|
|
+ height=8cm,
|
|
|
|
+ grid style={dashed, gray!30},
|
|
|
|
+ xmin=-0.7, % start the diagram at this x-coordinate
|
|
|
|
+ xmax= 0.7, % end the diagram at this x-coordinate
|
|
|
|
+ ymin=-0.25, % start the diagram at this y-coordinate
|
|
|
|
+ ymax= 0.5, % end the diagram at this y-coordinate
|
|
|
|
+ axis background/.style={fill=white},
|
|
|
|
+ xlabel=$x$,
|
|
|
|
+ ylabel=$y$,
|
|
|
|
+ %xticklabels={-2,-1.6,...,7},
|
|
|
|
+ %yticklabels={-8,-7,...,8},
|
|
|
|
+ tick align=outside,
|
|
|
|
+ minor tick num=-3,
|
|
|
|
+ enlargelimits=true,
|
|
|
|
+ tension=0.08]
|
|
|
|
+ \addplot[domain=-0.7:0.7, thick,samples=50, orange] {x*x};
|
|
|
|
+ \draw (axis cs:0,0.5) circle[radius=0.5];
|
|
|
|
+ \draw[red, thick] (axis cs:0,0.5) -- (axis cs:0.101,0.0102);
|
|
|
|
+ \draw[red, thick] (axis cs:0,0.5) -- (axis cs:-0.101,0.0102);
|
|
|
|
+ \draw[red, thick] (axis cs:0,0.5) -- (axis cs:0,0);
|
|
|
|
+ \addlegendentry{$f(x)=x^2$}
|
|
|
|
+ \end{axis}
|
|
|
|
+ \end{tikzpicture}
|
|
\caption{3 points with minimal distance?}
|
|
\caption{3 points with minimal distance?}
|
|
- \todo[inline]{Is this possible?}
|
|
|
|
|
|
+ \todo[inline]{Is this possible? http://math.stackexchange.com/q/553097/6876}
|
|
\end{figure}
|
|
\end{figure}
|
|
|
|
|
|
\subsection{Calculate points with minimal distance}
|
|
\subsection{Calculate points with minimal distance}
|
|
\todo[inline]{Write this}
|
|
\todo[inline]{Write this}
|
|
|
|
|
|
\section{Minimal distance to a cubic function}
|
|
\section{Minimal distance to a cubic function}
|
|
|
|
+Let $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ with $a \in \mdr \setminus \Set{0}$ and
|
|
|
|
+$b, c, d \in \mdr$ be a function.
|
|
|
|
+
|
|
\subsection{Number of points with minimal distance}
|
|
\subsection{Number of points with minimal distance}
|
|
\todo[inline]{Write this}
|
|
\todo[inline]{Write this}
|
|
|
|
|
|
|
|
+\subsection{Special points}
|
|
|
|
+\todo[inline]{Write this}
|
|
|
|
+
|
|
|
|
+\subsection{Voronoi}
|
|
|
|
+
|
|
|
|
+For $b^2 \geq 3ac$
|
|
|
|
+
|
|
|
|
+\todo[inline]{Write this}
|
|
\subsection{Calculate points with minimal distance}
|
|
\subsection{Calculate points with minimal distance}
|
|
\todo[inline]{Write this}
|
|
\todo[inline]{Write this}
|
|
\end{document}
|
|
\end{document}
|