|
@@ -0,0 +1,172 @@
|
|
|
+\documentclass[a4paper]{scrartcl}
|
|
|
+\usepackage{amssymb, amsmath} % needed for math
|
|
|
+\usepackage[utf8]{inputenc} % this is needed for umlauts
|
|
|
+\usepackage[english]{babel} % this is needed for umlauts
|
|
|
+\usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
|
|
|
+\usepackage[margin=2.5cm]{geometry} %layout
|
|
|
+\usepackage{hyperref} % links im text
|
|
|
+\usepackage{braket} % needed for \Set
|
|
|
+\usepackage{parskip}
|
|
|
+\usepackage[colorinlistoftodos]{todonotes}
|
|
|
+\usepackage{pgfplots}
|
|
|
+\pgfplotsset{compat=1.7,compat/path replacement=1.5.1}
|
|
|
+\usepackage{tikz}
|
|
|
+
|
|
|
+\title{Minimal distance to a cubic function}
|
|
|
+\author{Martin Thoma}
|
|
|
+
|
|
|
+\hypersetup{
|
|
|
+ pdfauthor = {Martin Thoma},
|
|
|
+ pdfkeywords = {},
|
|
|
+ pdftitle = {Minimal Distance}
|
|
|
+}
|
|
|
+
|
|
|
+\def\mdr{\ensuremath{\mathbb{R}}}
|
|
|
+
|
|
|
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
+% Begin document %
|
|
|
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
+\begin{document}
|
|
|
+\maketitle
|
|
|
+\begin{abstract}
|
|
|
+In this paper I want to discuss how to find all points on a a cubic
|
|
|
+function with minimal distance to a given point.
|
|
|
+\end{abstract}
|
|
|
+
|
|
|
+\section{Description of the Problem}
|
|
|
+Let $f: \mdr \rightarrow \mdr$ be a polynomial function and $P \in \mdr^2$
|
|
|
+be a point. Let $d: \mdr^2 \times \mdr^2 \rightarrow \mdr_0^+$
|
|
|
+be the euklidean distance of two points:
|
|
|
+\[d \left ((x_1, y_1), (x_2, y_2) \right) := \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\]
|
|
|
+
|
|
|
+Now there is finite set of points $x_1, \dots, x_n$ such that
|
|
|
+\[\forall \tilde x \in \mathbb{R} \setminus \{x_1, \dots, x_n\}: d(P, (x_1, f(x_1))) = \dots = d(P, (x_n, f(x_n))) < d(P, (\tilde x, f(\tilde x)))\]
|
|
|
+
|
|
|
+\section{Minimal distance to a constant function}
|
|
|
+Let $f(x) = c$ with $c \in \mdr$ be a function.
|
|
|
+
|
|
|
+\todo[inline]{add image}
|
|
|
+
|
|
|
+Then $(x_P,f(x_P))$ has
|
|
|
+minimal distance to $P$. Every other point has higher distance.
|
|
|
+
|
|
|
+\section{Minimal distance to a linear function}
|
|
|
+Let $f(x) = m \cdot x + t$ with $m \in \mdr \setminus \Set{0}$ and
|
|
|
+$t \in \mdr$ be a function.
|
|
|
+
|
|
|
+\todo[inline]{add image}
|
|
|
+
|
|
|
+Now you can drop a perpendicular through $P$ on $f(x)$. The slope $f_\bot$
|
|
|
+of the perpendicular is $- \frac{1}{m}$. Then:
|
|
|
+
|
|
|
+\begin{align}
|
|
|
+ f_\bot(x) &= - \frac{1}{m} \cdot x + t_\bot\\
|
|
|
+ \Rightarrow y_P &= - \frac{1}{m} \cdot x_P + t_\bot\\
|
|
|
+ \Leftrightarrow t_\bot &= y_P + \frac{1}{m} \cdot x_P\\
|
|
|
+ f(x) &= f_\bot(x)\\
|
|
|
+ \Leftrightarrow m \cdot x + t &= - \frac{1}{m} \cdot x + \left(y_P + \frac{1}{m} \cdot x_P \right)\\
|
|
|
+ \Leftrightarrow \left (m + \frac{1}{m} \right ) \cdot x &= y_P + \frac{1}{m} \cdot x_P - t\\
|
|
|
+ \Leftrightarrow x &= \frac{m}{m^2+1} \left ( y_P + \frac{1}{m} \cdot x_P - t \right )
|
|
|
+\end{align}
|
|
|
+
|
|
|
+There is only one point with minimal distance.
|
|
|
+
|
|
|
+\section{Minimal distance to a quadratic function}
|
|
|
+Let $f(x) = a \cdot x^2 + b \cdot x + c$ with $a \in \mdr \setminus \Set{0}$ and
|
|
|
+$b, c \in \mdr$ be a function.
|
|
|
+
|
|
|
+\begin{figure}[htp]
|
|
|
+ \centering
|
|
|
+\begin{tikzpicture}
|
|
|
+ \begin{axis}[
|
|
|
+ legend pos=north west,
|
|
|
+ axis x line=middle,
|
|
|
+ axis y line=middle,
|
|
|
+ grid = major,
|
|
|
+ width=0.8\linewidth,
|
|
|
+ height=8cm,
|
|
|
+ grid style={dashed, gray!30},
|
|
|
+ xmin=-3, % start the diagram at this x-coordinate
|
|
|
+ xmax= 3, % end the diagram at this x-coordinate
|
|
|
+ ymin=-0.25, % start the diagram at this y-coordinate
|
|
|
+ ymax= 9, % end the diagram at this y-coordinate
|
|
|
+ axis background/.style={fill=white},
|
|
|
+ xlabel=$x$,
|
|
|
+ ylabel=$y$,
|
|
|
+ %xticklabels={-2,-1.6,...,7},
|
|
|
+ %yticklabels={-8,-7,...,8},
|
|
|
+ tick align=outside,
|
|
|
+ minor tick num=-3,
|
|
|
+ enlargelimits=true,
|
|
|
+ tension=0.08]
|
|
|
+ \addplot[domain=-3:3, thick,samples=50, red] {0.5*x*x};
|
|
|
+ \addplot[domain=-3:3, thick,samples=50, green] {x*x};
|
|
|
+ \addplot[domain=-3:3, thick,samples=50, blue] {x*x + x};
|
|
|
+ \addplot[domain=-3:3, thick,samples=50, orange] {x*x + 2*x};
|
|
|
+ \addplot[domain=-3:3, thick,samples=50, black] {-x*x + 6};
|
|
|
+ \addlegendentry{$f_1(x)=\frac{1}{2}x^2$}
|
|
|
+ \addlegendentry{$f_2(x)=x^2$}
|
|
|
+ \addlegendentry{$f_3(x)=x^2+x$}
|
|
|
+ \addlegendentry{$f_4(x)=x^2+2x$}
|
|
|
+ \addlegendentry{$f_5(x)=-x^2+6$}
|
|
|
+ \end{axis}
|
|
|
+\end{tikzpicture}
|
|
|
+ \caption{Quadratic functions}
|
|
|
+\end{figure}
|
|
|
+
|
|
|
+\subsection{Number of points with minimal distance}
|
|
|
+It is obvious that a quadratic function can have two points with
|
|
|
+minimal distance.
|
|
|
+
|
|
|
+For example, let $f(x) = x^2$ and $P = (0,5)$. Then $P_{f,1} \approx (2.179, 2.179^2)$
|
|
|
+has minimal distance to $P$, but also $P_{f,2}\approx (-2.179, 2.179^2)$.
|
|
|
+
|
|
|
+Obviously, there cannot be more than three points with minimal distance.
|
|
|
+But can there be three points?
|
|
|
+
|
|
|
+\begin{figure}[htp]
|
|
|
+ \centering
|
|
|
+\begin{tikzpicture}
|
|
|
+ \begin{axis}[
|
|
|
+ legend pos=north west,
|
|
|
+ axis x line=middle,
|
|
|
+ axis y line=middle,
|
|
|
+ grid = major,
|
|
|
+ width=0.8\linewidth,
|
|
|
+ height=8cm,
|
|
|
+ grid style={dashed, gray!30},
|
|
|
+ xmin=-0.7, % start the diagram at this x-coordinate
|
|
|
+ xmax= 0.7, % end the diagram at this x-coordinate
|
|
|
+ ymin=-0.25, % start the diagram at this y-coordinate
|
|
|
+ ymax= 0.5, % end the diagram at this y-coordinate
|
|
|
+ axis background/.style={fill=white},
|
|
|
+ xlabel=$x$,
|
|
|
+ ylabel=$y$,
|
|
|
+ %xticklabels={-2,-1.6,...,7},
|
|
|
+ %yticklabels={-8,-7,...,8},
|
|
|
+ tick align=outside,
|
|
|
+ minor tick num=-3,
|
|
|
+ enlargelimits=true,
|
|
|
+ tension=0.08]
|
|
|
+ \addplot[domain=-0.7:0.7, thick,samples=50, orange] {x*x};
|
|
|
+ \draw (axis cs:0,0.5) circle[radius=0.5];
|
|
|
+ \draw[red, thick] (axis cs:0,0.5) -- (axis cs:0.101,0.0102);
|
|
|
+ \draw[red, thick] (axis cs:0,0.5) -- (axis cs:-0.101,0.0102);
|
|
|
+ \draw[red, thick] (axis cs:0,0.5) -- (axis cs:0,0);
|
|
|
+ \addlegendentry{$f(x)=x^2$}
|
|
|
+ \end{axis}
|
|
|
+\end{tikzpicture}
|
|
|
+ \caption{3 points with minimal distance?}
|
|
|
+ \todo[inline]{Is this possible?}
|
|
|
+\end{figure}
|
|
|
+
|
|
|
+\subsection{Calculate points with minimal distance}
|
|
|
+\todo[inline]{Write this}
|
|
|
+
|
|
|
+\section{Minimal distance to a cubic function}
|
|
|
+\subsection{Number of points with minimal distance}
|
|
|
+\todo[inline]{Write this}
|
|
|
+
|
|
|
+\subsection{Calculate points with minimal distance}
|
|
|
+\todo[inline]{Write this}
|
|
|
+\end{document}
|