|
@@ -6,29 +6,45 @@
|
|
|
% Reguläre Ausdrücke %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
\section*{Reguläre Ausdrücke}
|
|
|
-$\emptyset\;\;\;$ Leere Menge\\
|
|
|
-$\epsilon\;\;\;$ Das leere Wort\\
|
|
|
-$\alpha, \beta\;\;\;$ Reguläre Ausdrücke\\
|
|
|
-$L(\alpha)\;\;\;$ Die durch $\alpha$ beschriebene Sprache\\
|
|
|
-$\begin{aligned}[t]
|
|
|
- L(\alpha | \beta) &= L(\alpha) \cup L(\beta)\\
|
|
|
- L(\alpha \cdot \beta)&= L(\alpha) \cdot L(\beta)
|
|
|
-\end{aligned}$\\
|
|
|
-$L^0 := \Set{\varepsilon}\;\;\;$ Die leere Sprache\\
|
|
|
-$L^{n+1} := L^n \circ L \text{ für } n \in \mdn_0\;\;\;$ Potenz einer Sprache\\
|
|
|
-$\begin{aligned}[t]
|
|
|
- \alpha^+ &=& L(\alpha)^+ &=& \bigcup_{i \in \mdn} L(\alpha)^i\\
|
|
|
- \alpha^* &=& L(\alpha)^* &=& \bigcup_{i \in \mdn_0} L(\alpha)^i
|
|
|
-\end{aligned}$
|
|
|
+
|
|
|
+% Set \mylengtha to widest element in first column; adjust
|
|
|
+% \mylengthb so that the width of the table is \columnwidth
|
|
|
+\settowidth\mylengtha{$\alpha^+ = L(\alpha)^+$}
|
|
|
+\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
|
|
|
+
|
|
|
+\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
|
|
|
+ $\emptyset$ & Leere Menge\\
|
|
|
+ $\epsilon$ & Das leere Wort\\
|
|
|
+ $\alpha, \beta$ & Reguläre Ausdrücke\\
|
|
|
+ $L(\alpha)$ & Die durch $\alpha$ beschriebene Sprache\\
|
|
|
+ $L(\alpha | \beta)$& $L(\alpha) \cup L(\beta)$\\
|
|
|
+ $L^0$ & Die leere Sprache, also $\Set{\varepsilon}$\\
|
|
|
+ $L^{n+1}$ & Potenz einer Sprache. Diese ist definiert als\newline $L^n \circ L \text{ für } n \in \mdn_0$\\
|
|
|
+ $\alpha^+ = L(\alpha)^+$ & $\bigcup_{i \in \mdn} L(\alpha)^i$\\
|
|
|
+ $\alpha^* = L(\alpha)^*$ & $\bigcup_{i \in \mdn_0} L(\alpha)^i$\\
|
|
|
+\end{xtabular}
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% Logik %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
\section*{Logik}
|
|
|
-$\mathcal{M} \models \varphi\;\;\;$ Im Modell $\mathcal{M}$ gilt das Prädikat $\varphi$.\\
|
|
|
-$\psi \vdash \varphi\;\;\;$ Die Formel $\varphi$ kann aus der Menge der Formeln $\psi$ hergeleitet werden.\\
|
|
|
+
|
|
|
+\settowidth\mylengtha{$\mathcal{M} \models \varphi$}
|
|
|
+\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
|
|
|
+
|
|
|
+\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
|
|
|
+$\mathcal{M} \models \varphi$& Im Modell $\mathcal{M}$ gilt das Prädikat $\varphi$.\\
|
|
|
+$\psi \vdash \varphi$ & Die Formel $\varphi$ kann aus der Menge der Formeln $\psi$ hergeleitet werden.\\
|
|
|
+\end{xtabular}
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% Weiteres %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
\section*{Weiteres}
|
|
|
-$\bot\;\;\;$ Bottom\\
|
|
|
+
|
|
|
+\settowidth\mylengtha{$\bot$}
|
|
|
+\setlength\mylengthb{\dimexpr\columnwidth-\mylengtha-2\tabcolsep\relax}
|
|
|
+
|
|
|
+\begin{xtabular}{@{} p{\mylengtha} P{\mylengthb} @{}}
|
|
|
+$\bot$ & Bottom\\
|
|
|
+$\vdash$& TODO?
|
|
|
+\end{xtabular}
|