|
@@ -33,21 +33,22 @@
|
|
|
\State $f(s,v) \gets c(s,v)$ \Comment{Push maximum flow out at the beginning}
|
|
|
\State $r(v,s) \gets c(v,s) - f(v,s)$
|
|
|
\State $dist(v) \gets 0$
|
|
|
- \State $e(v) \gets c(s,v)$ \Comment{$v$ has to much flow}
|
|
|
+ \State $e(v) \gets c(s,v)$ \Comment{$v$ has too much flow}
|
|
|
\EndFor
|
|
|
\\
|
|
|
- \While{$\exists v \in V:$ \Call{isActive}{v}}
|
|
|
- \If{\Call{isPushOk}{v}}
|
|
|
- \State \Call{Push}{v}
|
|
|
- \ElsIf{\Call{isRelabelOk}{v}}
|
|
|
- \State \Call{Relabel}{v}
|
|
|
+ \While{$\exists v \in V:$ \Call{isActive}{$v$}}
|
|
|
+ \If{\Call{isPushOk}{$v$}}
|
|
|
+ \State \Call{Push}{$v$}
|
|
|
+ \EndIf
|
|
|
+ \If{\Call{isRelabelOk}{$v$}}
|
|
|
+ \State \Call{Relabel}{$v$}
|
|
|
\EndIf
|
|
|
\EndWhile
|
|
|
\\
|
|
|
\State \Return $f$ \Comment{Maximaler Fluss}
|
|
|
\EndFunction
|
|
|
\\
|
|
|
- \Function{Push}{Graph $D$, Flow $f$, Node $v$, Node $w$}
|
|
|
+ \Function{Push}{Node $v$, Node $w$}
|
|
|
\State $\Delta \gets \min\Set{e(v), r_f(v,w)}$
|
|
|
\State $f(v,w) \gets f(v,w) + \Delta$
|
|
|
\State $f(w,v) \gets f(w,v) - \Delta$
|
|
@@ -65,16 +66,16 @@
|
|
|
\EndIf
|
|
|
\EndFunction
|
|
|
\\
|
|
|
- \Function{isActive}{Node v}
|
|
|
+ \Function{isActive}{Node $v$}
|
|
|
\State\Return $(e(v) > 0) \land (dist(v) < \infty)$
|
|
|
\EndFunction
|
|
|
\\
|
|
|
- \Function{isRelabelOk}{Node v}
|
|
|
- \State\Return \Call{isActive}{v} $\land (\forall w \in \Set{r_f(v,w) >0}: dist(v) \leq dist(w))$
|
|
|
+ \Function{isRelabelOk}{Node $v$}
|
|
|
+ \State\Return \Call{isActive}{$v$} $\displaystyle \bigwedge_{w \in \Set{w \in V | r_f(v,w) >0}}(dist(v) \leq dist(w))$
|
|
|
\EndFunction
|
|
|
\\
|
|
|
- \Function{isPushOk}{Node v}
|
|
|
- \State\Return \Call{isActive}{v} $\land (r_f > 0) \land (dist(v) == dist(w)+1)$
|
|
|
+ \Function{isPushOk}{Node $v$}
|
|
|
+ \State\Return \Call{isActive}{$v$} $\land (e(v) > 0) \land (dist(v) == dist(w)+1)$
|
|
|
\EndFunction
|
|
|
\end{algorithmic}
|
|
|
\caption{Algorithm of Goldberg and Tarjan}
|