|
@@ -106,9 +106,11 @@
|
|
\textbf{3.9} & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000\\
|
|
\textbf{3.9} & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000 & 1.0000\\
|
|
\bottomrule
|
|
\bottomrule
|
|
\end{tabular}
|
|
\end{tabular}
|
|
- \caption{$\Phi_{0;1}(x + \Delta x)$}
|
|
|
|
|
|
+ \caption{Approximations of $\Phi_{0;1}(x + \Delta x)$}
|
|
\end{table}
|
|
\end{table}
|
|
\begin{align*}
|
|
\begin{align*}
|
|
|
|
+ \Phi_{0;1}(x) &= \int_{-\infty}^{x} e^{- t^2 / 2} \mathrm{d} t &
|
|
|
|
+ \Phi_{0;1}(1.65) &\approx 0.9505\\
|
|
\Phi_{\mu; \sigma^2}(x) &= \Phi_{0;1} \left (\frac{x-\mu}{\sigma} \right ) &
|
|
\Phi_{\mu; \sigma^2}(x) &= \Phi_{0;1} \left (\frac{x-\mu}{\sigma} \right ) &
|
|
\Phi_{0;1}(-x) &= 1 - \Phi_{0;1}(x)
|
|
\Phi_{0;1}(-x) &= 1 - \Phi_{0;1}(x)
|
|
\end{align*}
|
|
\end{align*}
|