|
|
@@ -1,2 +1,106 @@
|
|
|
\section*{Aufgabe 1}
|
|
|
-TODO
|
|
|
+\paragraph{Gegeben:}
|
|
|
+
|
|
|
+\[A = \begin{pmatrix}
|
|
|
+ 2 & 3 & -1\\
|
|
|
+ -6 & -5 & 0\\
|
|
|
+ 2 & -5 & 6
|
|
|
+\end{pmatrix},\;\;\; b = \begin{pmatrix}20\\-41\\-15\end{pmatrix}\]
|
|
|
+
|
|
|
+\paragraph{LR-Zerlegung:}
|
|
|
+
|
|
|
+\begin{align}
|
|
|
+ &&A^{(0)} &= \begin{gmatrix}[p]
|
|
|
+ 2 & 3 & -1\\
|
|
|
+ -6 & -5 & 0\\
|
|
|
+ 2 & -5 & 6
|
|
|
+ \rowops
|
|
|
+ \swap{0}{1}
|
|
|
+ \end{gmatrix}\\
|
|
|
+ P^{(1)} &= \begin{pmatrix}
|
|
|
+ 0 & 1 & 0\\
|
|
|
+ 1 & 0 & 0\\
|
|
|
+ 0 & 0 & 1
|
|
|
+ \end{pmatrix}
|
|
|
+ &A^{(1)} &=
|
|
|
+ \begin{gmatrix}[p]
|
|
|
+ -6 & -5 & 0\\
|
|
|
+ 2 & 3 & -1\\
|
|
|
+ 2 & -5 & 6
|
|
|
+ \rowops
|
|
|
+ \add[\cdot \frac{1}{3}]{0}{1}
|
|
|
+ \add[\cdot \frac{1}{3}]{0}{2}
|
|
|
+ \end{gmatrix}\\
|
|
|
+ L^{(2)} &=\begin{pmatrix}
|
|
|
+ 1 & 0 & 0\\
|
|
|
+ \nicefrac{1}{3} & 1 & 0\\
|
|
|
+ \nicefrac{1}{3} & 0 & 1
|
|
|
+ \end{pmatrix},
|
|
|
+ & A^{(2)} &= \begin{gmatrix}[p]
|
|
|
+ -6 & -5 & 0\\
|
|
|
+ 0 & \frac{4}{3} & -1\\
|
|
|
+ 0 & -\frac{20}{3} & 6
|
|
|
+ \rowops
|
|
|
+ \swap{1}{2}
|
|
|
+ \end{gmatrix}\\
|
|
|
+ P^{(3)} &= \begin{pmatrix}
|
|
|
+ 1 & 0 & 0\\
|
|
|
+ 0 & 0 & 1\\
|
|
|
+ 0 & 1 & 0
|
|
|
+ \end{pmatrix},
|
|
|
+ & A^{(3)} &= \begin{gmatrix}[p]
|
|
|
+ -6 & -5 & 0\\
|
|
|
+ 0 & -\frac{20}{3} & 6\\
|
|
|
+ 0 & \frac{4}{3} & -1
|
|
|
+ \rowops
|
|
|
+ \add[\cdot \frac{1}{5}]{1}{2}
|
|
|
+ \end{gmatrix}\\
|
|
|
+ L^{(4)} &= \begin{pmatrix}
|
|
|
+ 1 & 0 & 0\\
|
|
|
+ 0 & 1 & 0\\
|
|
|
+ 0 & \nicefrac{1}{5} & 1
|
|
|
+ \end{pmatrix},
|
|
|
+ & A^{(4)} &= \begin{gmatrix}[p]
|
|
|
+ -6 & -5 & 0\\
|
|
|
+ 0 & -\frac{20}{3} & 6\\
|
|
|
+ 0 & 0 & \nicefrac{1}{5}
|
|
|
+ \end{gmatrix} =:R
|
|
|
+\end{align}
|
|
|
+
|
|
|
+Es gilt nun:
|
|
|
+
|
|
|
+\begin{align}
|
|
|
+ P :&= P^{(3)} \cdot P^{(1)}\\
|
|
|
+ &= \begin{pmatrix}
|
|
|
+ 1 & 0 & 0\\
|
|
|
+ 0 & 0 & 1\\
|
|
|
+ 0 & 1 & 0
|
|
|
+ \end{pmatrix} \cdot \begin{pmatrix}
|
|
|
+ 0 & 1 & 0\\
|
|
|
+ 1 & 0 & 0\\
|
|
|
+ 0 & 0 & 1
|
|
|
+ \end{pmatrix} \\
|
|
|
+ &=
|
|
|
+ \begin{pmatrix}
|
|
|
+ 0 & 1 & 0\\
|
|
|
+ 0 & 0 & 1\\
|
|
|
+ 1 & 0 & 0
|
|
|
+ \end{pmatrix}\\
|
|
|
+ L^{(4)} \cdot P^{(3)} \cdot L^{(2)} \cdot P^{(1)} \cdot A &= R\\
|
|
|
+L^{-1} &= L^{(4)} \cdot \hat{L_1}\\
|
|
|
+ \hat{L_1} &= P^{(3)} \cdot L^{(2)} \cdot (P^{(3)})^{-1}\\
|
|
|
+&= P^{(3)} \cdot L^{(2)} \cdot P^{(3)}\\
|
|
|
+&= \begin{pmatrix}
|
|
|
+ 1 & 0 & 0\\
|
|
|
+ \nicefrac{1}{3} & 1 & 0\\
|
|
|
+ \nicefrac{1}{3} & 0 & 1
|
|
|
+ \end{pmatrix}\\
|
|
|
+ L &= (L^{(4)} \cdot \hat{L_1})^{-1}\\
|
|
|
+ &= \begin{pmatrix}
|
|
|
+ 1 & 0 & 0\\
|
|
|
+ -\frac{1}{3} & 1 & 0\\
|
|
|
+ -\frac{1}{3} & -\frac{1}{5} & 1
|
|
|
+\end{pmatrix}
|
|
|
+\end{align}
|
|
|
+
|
|
|
+Überprüfung mit \href{http://www.wolframalpha.com/input/?i=%7B%7B1%2C+0%2C+0%7D%2C+%7B-1%2F3%2C+1%2C+0%7D%2C+%7B-1%2F3%2C+-1%2F5%2C+1%7D%7D*%7B%7B-6%2C-5%2C0%7D%2C%7B0%2C-20%2F3%2C6%7D%2C%7B0%2C0%2C1%2F5%7D%7D}{Wolfram|Alpha}.
|