|
@@ -9,49 +9,38 @@
|
|
|
\usepackage{braket} % needed for \Set
|
|
|
\usepackage{algorithm,algpseudocode}
|
|
|
|
|
|
-\usepackage{tikz}
|
|
|
-\usetikzlibrary{decorations.pathreplacing,calc}
|
|
|
-\newcommand{\tikzmark}[1]{\tikz[overlay,remember picture] \node (#1) {};}
|
|
|
-\newcommand*{\AddNote}[4]{%
|
|
|
- \begin{tikzpicture}[overlay, remember picture]
|
|
|
- \draw [decoration={brace,amplitude=0.5em},decorate,very thick]
|
|
|
- ($(#3)!(#1.north)!($(#3)-(0,1)$)$) --
|
|
|
- ($(#3)!(#2.south)!($(#3)-(0,1)$)$)
|
|
|
- node [align=center, text width=2.5cm, pos=0.5, anchor=west] {#4};
|
|
|
- \end{tikzpicture}
|
|
|
-}%
|
|
|
-
|
|
|
\begin{document}
|
|
|
\begin{preview}
|
|
|
\begin{algorithm}[H]
|
|
|
\begin{algorithmic}
|
|
|
- \Require $p \in \mathbb{P}, a \in \mathbb{Z}, p \geq 3$
|
|
|
- \If{$a \geq p$ or $a < 0$}\Comment{Regel (III)}
|
|
|
- \State \Return $\Call{CalculateLegendre}{a \mod p, p}$ \Comment{nun: $a \in [0, \dots, p-1]$}
|
|
|
+ \Require $p \in \mathbb{P}, a \in \mathbb{Z}, p \geq 3$
|
|
|
+ \Procedure{CalculateLegendre}{$a$, $p$}
|
|
|
+ \If{$a \geq p$ or $a < 0$}\Comment{rule (III)}
|
|
|
+ \State \Return $\Call{CalculateLegendre}{a \mod p, p}$ \Comment{now: $a \in [0, \dots, p-1]$}
|
|
|
\ElsIf{$a == 0$ or $a == 1$}
|
|
|
- \State \Return $a$ \Comment{nun: $a \in [2, \dots, p-1]$}
|
|
|
- \ElsIf{$a == 2$} \Comment{Regel (VII)}
|
|
|
+ \State \Return $a$ \Comment{now: $a \in [2, \dots, p-1]$}
|
|
|
+ \ElsIf{$a == 2$} \Comment{rule (VII)}
|
|
|
\If{$a \equiv \pm 1 \mod 8$}
|
|
|
\State \Return 1
|
|
|
\Else
|
|
|
\State \Return -1
|
|
|
- \EndIf \Comment{nun: $a \in [3, \dots, p-1]$}
|
|
|
- \ElsIf{$a == p-1$} \Comment{Regel (VI)}
|
|
|
+ \EndIf \Comment{now: $a \in [3, \dots, p-1]$}
|
|
|
+ \ElsIf{$a == p-1$} \Comment{rule (VI)}
|
|
|
\If{$p \equiv 1 \mod 4$}
|
|
|
\State \Return 1
|
|
|
\Else
|
|
|
\State \Return -1
|
|
|
- \EndIf \Comment{nun: $a \in [3, \dots, p-2]$}
|
|
|
- \ElsIf{!$\Call{isPrime}{a}$} \Comment{Regel (II)}
|
|
|
- \State $p_1, p_2, \dots, p_n \gets \Call{Faktorisiere}{a}$
|
|
|
- \State \Return $\prod_{i=1}^n \Call{CalculateLegendre}{p_i, p}$ \Comment{nun: $a \in \mathbb{P}, \sqrt{p-2} \geq a \geq 3$}
|
|
|
- \Else
|
|
|
+ \EndIf \Comment{now: $a \in [3, \dots, p-2]$}
|
|
|
+ \ElsIf{!$\Call{isPrime}{a}$} \Comment{rule (II)}
|
|
|
+ \State $p_1, p_2, \dots, p_n \gets \Call{Factorize}{a}$
|
|
|
+ \State \Return $\prod_{i=1}^n \Call{CalculateLegendre}{p_i, p}$
|
|
|
+ \Else \Comment{now: $a \in \mathbb{P}, \sqrt{p-2} \geq a \geq 3$}
|
|
|
\State \Return $(-1) \cdot \Call{CalculateLegendre}{p, a}$
|
|
|
\EndIf
|
|
|
+ \EndProcedure
|
|
|
\end{algorithmic}
|
|
|
- \caption{Calculate Legendre-Symbol}
|
|
|
- %\AddNote{top}{bottom}{right}{calclulate $p$ such that: $b^p \leq Z < b^{p+1}$} %\tikzmark{top},\tikzmark{right},\tikzmark{bottom}
|
|
|
- \label{alg:euclidBaseTransformation}
|
|
|
+ \caption{Calculate Legendre symbol}
|
|
|
+ \label{alg:calculateLegendreSymbol}
|
|
|
\end{algorithm}
|
|
|
\end{preview}
|
|
|
\end{document}
|