|
@@ -28,10 +28,8 @@
|
|
|
\Require $p \in \mathbb{P}, a \in \mathbb{Z}, p \geq 3$
|
|
|
\If{$a \geq p$ or $a < 0$}\Comment{Regel (III)}
|
|
|
\State \Return $\Call{CalculateLegendre}{a \mod p, p}$ \Comment{nun: $a \in [0, \dots, p-1]$}
|
|
|
- \ElsIf{$a == 0$} \Comment{Null-Fall}
|
|
|
- \State \Return 0 \Comment{nun: $a \in [1, \dots, p-1]$}
|
|
|
- \ElsIf{$a == 1$} \Comment{Eins-Fall}
|
|
|
- \State \Return 1 \Comment{nun: $a \in [2, \dots, p-1]$}
|
|
|
+ \ElsIf{$a == 0$ or $a == 1$}
|
|
|
+ \State \Return $a$ \Comment{nun: $a \in [2, \dots, p-1]$}
|
|
|
\ElsIf{$a == 2$} \Comment{Regel (VII)}
|
|
|
\If{$a \equiv \pm 1 \mod 8$}
|
|
|
\State \Return 1
|
|
@@ -46,7 +44,7 @@
|
|
|
\EndIf \Comment{nun: $a \in [3, \dots, p-2]$}
|
|
|
\ElsIf{!$\Call{isPrime}{a}$} \Comment{Regel (II)}
|
|
|
\State $p_1, p_2, \dots, p_n \gets \Call{Faktorisiere}{a}$
|
|
|
- \State \Return $\prod_{i=1}^n \Call{CalculateLegendre}{p_i, p}$ \Comment{nun: $a \in \mathbb{P}, a \geq 3$}
|
|
|
+ \State \Return $\prod_{i=1}^n \Call{CalculateLegendre}{p_i, p}$ \Comment{nun: $a \in \mathbb{P}, \sqrt{p-2} \geq a \geq 3$}
|
|
|
\Else
|
|
|
\State \Return $(-1) \cdot \Call{CalculateLegendre}{p, a}$
|
|
|
\EndIf
|