|
@@ -45,10 +45,10 @@
|
|
|
\centering
|
|
|
|
|
|
\begin{align*}
|
|
|
-\cosh x = \frac {1}{2} (e^x + e^{-x}) &= \scriptstyle \sum_{n = 0}^{\infty} \frac {x^{2n}}{(2n)!} \\
|
|
|
+\cosh x = \frac {1}{2} (e^x + e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n}}{(2n)!} \\
|
|
|
\sinh x = \frac {1}{2} (e^x - e^{-x}) &= \sum_{n = 0}^{\infty} \frac {x^{2n + 1}}{(2n + 1)!} \\
|
|
|
-e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} \\
|
|
|
-\sum_{n = 0}^{\infty} (-1)^n \frac {x^{n + 1}}{n + 1} &= \log (1+x) (x \in (-1,1)) \\
|
|
|
+e^x &= \sum_{n = 0}^{\infty} \frac {x^n}{n!} = \lim_{n\to\infty} \left (1+\frac{x}{n} \right )^n\\
|
|
|
+\sum_{n = 0}^{\infty} (-1)^n \frac {x^{n + 1}}{n + 1} &= \log (1+x) \; x \in (-1,1) \\
|
|
|
\sum_{n = 0}^{\infty} x^n &= \frac {1}{1 - x} (x \in (-1,1)) \\
|
|
|
0,\bar{3} &= \sum_{n = 1}^{\infty} \frac {3}{(10)^n}
|
|
|
\end{align*}
|