Browse Source

Vorlesung vom 28.11.2013 digitalisiert

Martin Thoma 11 năm trước cách đây
mục cha
commit
bd5f65062d
35 tập tin đã thay đổi với 536 bổ sung2 xóa
  1. BIN
      documents/GeoTopo/GeoTopo.pdf
  2. 1 0
      documents/GeoTopo/GeoTopo.tex
  3. 141 0
      documents/GeoTopo/Kapitel2.tex
  4. 3 0
      documents/GeoTopo/figures/todo.tex
  5. 10 0
      documents/GeoTopo/figures/topology-graph-k-3-3.tex
  6. 17 0
      documents/GeoTopo/figures/topology-graph-k-5.tex
  7. 8 0
      documents/GeoTopo/figures/topology-graph-simple.tex
  8. 15 0
      documents/GeoTopo/figures/topology-graph-tetraeder-area-2.tex
  9. 15 0
      documents/GeoTopo/figures/topology-graph-tetraeder-area.tex
  10. 11 0
      documents/GeoTopo/figures/topology-graph-tetraeder.tex
  11. 4 2
      documents/GeoTopo/shortcuts.sty
  12. 31 0
      tikz/topology-graph-k-3-3/Makefile
  13. 3 0
      tikz/topology-graph-k-3-3/Readme.md
  14. BIN
      tikz/topology-graph-k-3-3/topology-graph-k-3-3.png
  15. 15 0
      tikz/topology-graph-k-3-3/topology-graph-k-3-3.tex
  16. 31 0
      tikz/topology-graph-k-5/Makefile
  17. 3 0
      tikz/topology-graph-k-5/Readme.md
  18. BIN
      tikz/topology-graph-k-5/topology-graph-k-5.png
  19. 22 0
      tikz/topology-graph-k-5/topology-graph-k-5.tex
  20. 31 0
      tikz/topology-graph-simple/Makefile
  21. 3 0
      tikz/topology-graph-simple/Readme.md
  22. BIN
      tikz/topology-graph-simple/topology-graph-simple.png
  23. 13 0
      tikz/topology-graph-simple/topology-graph-simple.tex
  24. 31 0
      tikz/topology-graph-tetraeder-area-2/Makefile
  25. 3 0
      tikz/topology-graph-tetraeder-area-2/Readme.md
  26. BIN
      tikz/topology-graph-tetraeder-area-2/topology-graph-tetraeder-area-2.png
  27. 20 0
      tikz/topology-graph-tetraeder-area-2/topology-graph-tetraeder-area-2.tex
  28. 31 0
      tikz/topology-graph-tetraeder-area/Makefile
  29. 3 0
      tikz/topology-graph-tetraeder-area/Readme.md
  30. BIN
      tikz/topology-graph-tetraeder-area/topology-graph-tetraeder-area.png
  31. 21 0
      tikz/topology-graph-tetraeder-area/topology-graph-tetraeder-area.tex
  32. 31 0
      tikz/topology-graph-tetraeder/Makefile
  33. 3 0
      tikz/topology-graph-tetraeder/Readme.md
  34. BIN
      tikz/topology-graph-tetraeder/topology-graph-tetraeder.png
  35. 16 0
      tikz/topology-graph-tetraeder/topology-graph-tetraeder.tex

BIN
documents/GeoTopo/GeoTopo.pdf


+ 1 - 0
documents/GeoTopo/GeoTopo.tex

@@ -36,6 +36,7 @@
 \usetikzlibrary{3d,calc,intersections,er,arrows,positioning,shapes.misc,patterns,fadings,decorations.pathreplacing}
 \usepackage{tqft}
 \usepackage{cleveref} % has to be after hyperref, ntheorem, amsthm
+\usepackage{xspace}   % for new commands; decides weather I want to insert a space after the command
 \usepackage{shortcuts}
 
 \usepackage{fancyhdr}

+ 141 - 0
documents/GeoTopo/Kapitel2.tex

@@ -718,5 +718,146 @@ $\partial X$ ist eine Mannigfaltigkeit der Dimension $n-1$.
     $\Rightarrow \chi(\Delta^n) = 1 \qed$
 \end{beweis}
 
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Mitschrieb vom 28.11.2013                                         %
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\begin{definition}
+    \begin{enumerate}[label=\alph*),ref=\theplaindefinition.\alph*]
+        \item Ein 1D-Simplizialkomplex heißt \textbf{Graph}\xindex{Graph}.
+        \item Ein Graph, der homöomorph zu $S^1$ ist, heißt \textbf{Kreis}\xindex{Kreis}.
+        \item Ein zusammenhängender Graph heißt \textbf{Baum}\xindex{Baum},
+              wenn er keinen Kreis enthält.
+    \end{enumerate}
+\end{definition}
+
+\begin{figure}[ht]
+    \centering
+    \subfloat[Dies wird häufig auch als Multigraph bezeichnet.]{
+        \parbox{4cm}{\centering\input{figures/topology-graph-simple.tex}}
+        \label{fig:topology-graph-simple}
+    }%
+    \subfloat[Planare Einbettung des Tetraeders]{
+        \parbox{4cm}{\centering\input{figures/topology-graph-tetraeder.tex}}
+        \label{fig:topology-graph-tetraeder}
+    }
+
+    \subfloat[$K_5$]{
+        \parbox{4cm}{\centering\input{figures/topology-graph-k-5.tex}}
+        \label{fig:k-5}
+    }%
+    \subfloat[$K_{3,3}$]{
+        \parbox{4cm}{\centering\input{figures/topology-graph-k-3-3.tex}}
+        \label{fig:k-3-3}
+    }%
+    \label{fig:graphen-beispiele}
+    \caption{Beispiele für Graphen}
+\end{figure}
+
+\begin{korollar}
+    Für jeden Baum $T$ gilt $\gamma(T) = 1$.
+\end{korollar}
+
+\begin{beweis}
+    Induktion über die Anzahl der Ecken.
+\end{beweis}
+
+\begin{korollar}
+    \begin{enumerate}[label=\alph*),ref=\theplaindefinition.\alph*]
+        \item Jeder zusammenhängende Graph $\Gamma$ enthält einen
+              Teilbaum $T$, der alle Ecken von $\Gamma$ enthält.%
+              \footnote{$T$ wird \enquote{Spannbaum} genannt.}
+        \item Ist $n = a_1(\Gamma) = a_1(T)$, so ist $\chi(\Gamma) = 1 - n$.
+    \end{enumerate}
+\end{korollar}
+
+\begin{beweis}\leavevmode
+    \begin{enumerate}[label=\alph*),ref=\theplaindefinition.\alph*]
+        \item Siehe \enquote{Algorithmus von Kruskal}.
+        \item $\begin{aligned}[t]\chi(\Gamma) &= a_0(\Gamma) - a_1(\Gamma)\\
+                                        &= a_0(\Gamma) - (n+a_1(T))\\
+                                        &= a_0(T) - a_1(T) - n\\
+                                        &= \chi(T) - n\\
+                                        &= 1-n
+              \end{aligned}$
+    \end{enumerate}
+\end{beweis}
+
+\begin{korollar}\label{kor:simplex-unterteilung}
+    Sei $\Delta$ ein $n$-Simplex und $x \in \Delta^\circ \subseteq \mdr^n$.
+    Sei $K$ der Simplizialkomplex, der aus $\Delta$ durch 
+    \enquote{Unterteilung} in $x$ entsteht. Dann ist $\chi(K) = \chi(\Delta) = 1$.
+\end{korollar}
+
+\begin{figure}[ht]
+    \centering
+    \subfloat[$K$]{
+        \parbox{4cm}{\centering\input{figures/topology-graph-tetraeder-area.tex}}
+        \label{fig:topology-simplizial-complex-k}
+    }%
+    \subfloat[$\Delta$, das aus $K$ durch Unterteilung entsteht]{
+        \parbox{4cm}{\centering\input{figures/topology-graph-tetraeder-area-2.tex}}
+        \label{fig:topology-simplizial-complex-k-division}
+    }%
+    \label{fig:korollar-beispiel}
+    \caption{Beispiel für Korollar~\ref{kor:simplex-unterteilung}.}
+\end{figure}
+
+\begin{beweis}
+    $\chi(K) = \chi(\Delta) - \underbrace{\underbrace{(-1)^n}_{n-\text{Simplex}} + \sum_{k=0}^n (-1)^k}_{(1+(-1))^{n+1}} = \chi(\Delta) \qed$
+\end{beweis}
+
+\begin{satz}[Eulersche Polyederformel]\xindex{Eulersche Polyederformel}
+    Sei $P$ ein konvexes Polyeder in $\mdr^3$, d.~h. $\partial P$ ist
+    ein 2-dimensionaler Simplizialkomplex, sodass gilt:
+    \[\forall x,y \in \partial P: [x,y] \subseteq P\]
+
+    Dann ist $\chi(\partial P) = 2$.
+\end{satz}
+
+\begin{beweis}\leavevmode
+    \begin{enumerate}[label=\arabic*)]
+        \item Die Aussage ist richtig für den Tetraeder.
+        \item \Obda{} sei $0 \in P$ und $P \subseteq \fB_1(0)$. Projeziere
+              $0P$ von $0$ aus auf $\partial \fB_1(0) = S^2$.
+              Erhalte Triangulierung von $S^2$.
+
+              \todo[inline]{Bild von rundem Wuerfel}
+        \item Sind $P_1$ und $P_2$ konvexe Polygone und $T_1, T_2$
+              die zugehörigen Triangulierungen von $S^2$, so gibt es 
+              eine eine Triangulierungen $T$, die sowohl um $T_1$ als
+              auch um $T_2$ Verfeinerung ist.
+
+              \todo[inline]{Komische Zeichung}
+
+              Nach Korollar~\ref{kor:simplex-unterteilung} ist
+              $\chi(\partial P_1) = \chi(T_1) = \chi(T) = \chi(T_2) = \chi(\partial P_2) = 2$.
+              Weil \obda{} $P_2$ ein Tetraeder ist.
+    \end{enumerate}
+\end{beweis}
+
+\begin{korollar}
+    Sei $K$ ein \todo{Warum in Klammern?}{(endlicher)} Simplizialkomplex mit Eckenmenge $V$
+    und $<$ eine Totalordnung auf $V$.
+
+    Für jedes $n=0, \dots, d=\dim(K)$ sei $A_n(K)$ die Menge der
+    $n$-Simplizes von $K$ und $C_n(K)$ der $\mdr$-Vektorraum mit
+    Basis $A_n(K)$, d.~h.
+    \[C_n(K) = \Set{\sum_{\sigma \in A_n(K)} c_\sigma \cdot \sigma | c_\sigma \in \mdr}\]
+
+    Sei $\sigma = \Delta(x_0, \dots, x_n) \in A_n(K)$, sodass 
+    $x_0 < x_1 < \dots < x_n$.
+
+    Für $i = 0, \dots, n$ sei $\partial_i \sigma := \Delta(x_0, \dots, \hat{x_i}, \dots, x_n)$
+    die $i$-te Seite von $\sigma$. Sei $d_\sigma = d_n \sigma := \sum_{i=0} (-1)^i \partial_i \sigma \in C_{n-1} (K)$
+    und $d: C_n(K) \rightarrow C_{n-1}(K)$ die dadurch definierte lineare
+    Abbildung.
+
+    Dann gilt: $d_{n-1} \circ d_n = 0$
+
+    \todo[inline]{Skizze von Dreieck}
+
+    $d_2 \sigma = e_1 - e_2 + e_3 = c - b - (c-a) + b - a = 0$
+\end{korollar}
+
 % Die Übungsaufgaben sollen ganz am Ende des Kapitels sein.
 \input{Kapitel2-UB}

+ 3 - 0
documents/GeoTopo/figures/todo.tex

@@ -0,0 +1,3 @@
+\begin{tikzpicture}
+    \path (0,0)  edge [bend angle=10,bend right] node[label=TODO] {} (-1,-1.5);
+\end{tikzpicture}

+ 10 - 0
documents/GeoTopo/figures/topology-graph-k-3-3.tex

@@ -0,0 +1,10 @@
+\begin{tikzpicture}
+    \tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
+
+    \foreach \x in {0,1,2}
+    \foreach \y in {0,1,2}{
+      \node (a)[point] at (\y,0) {};
+      \node (b)[point] at (\x,1) {};
+        \draw (a) -- (b);
+    }
+\end{tikzpicture}

+ 17 - 0
documents/GeoTopo/figures/topology-graph-k-5.tex

@@ -0,0 +1,17 @@
+    \newcommand\n{5}
+    \begin{tikzpicture}
+        \tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
+
+        \begin{scope}[rotate=17]
+        %the multiplication with floats is not possible. Thus I split the loop in two.
+        \foreach \number in {1,...,\n}{
+            \node[point] (N-\number) at ({\number*(360/\n)}:1.5cm) {};
+        }
+
+        \foreach \number in {1,...,\n}{
+            \foreach \y in {1,...,\n}{
+                \draw (N-\number) -- (N-\y);
+            }
+        }
+        \end{scope}
+    \end{tikzpicture}

+ 8 - 0
documents/GeoTopo/figures/topology-graph-simple.tex

@@ -0,0 +1,8 @@
+\begin{tikzpicture}
+    \tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
+    \node (a)[point] at (0,0) {};
+    \node (b)[point] at (1,0) {};
+    \path (a.center) edge [bend left]  (b.center);
+    \path (a.center) edge              (b.center);
+    \path (a.center) edge [bend right] (b.center);
+\end{tikzpicture}

+ 15 - 0
documents/GeoTopo/figures/topology-graph-tetraeder-area-2.tex

@@ -0,0 +1,15 @@
+\begin{tikzpicture}
+    \tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
+    \node (z)[point] at (0,0) {};
+    \node (a)[point] at (90:1cm) {};
+    \node (b)[point] at (210:1cm) {};
+    \node (c)[point] at (330:1cm) {};
+    \node (d)[point] at (10:1.5cm) {};
+    \path (z.center) edge (a.center);
+    \path (z.center) edge (b.center);
+    \path (z.center) edge (c.center);
+    \draw (a.center) -- (b.center) -- (c.center) -- cycle;
+
+    \draw (a.center) -- (d.center);
+    \draw (c.center) -- (d.center);
+\end{tikzpicture}

+ 15 - 0
documents/GeoTopo/figures/topology-graph-tetraeder-area.tex

@@ -0,0 +1,15 @@
+\begin{tikzpicture}
+    \tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
+    \node (z)[point] at (0,0) {};
+    \node (a)[point] at (90:1cm) {};
+    \node (b)[point] at (210:1cm) {};
+    \node (c)[point] at (330:1cm) {};
+    \path (z.center) edge (a.center);
+    \path (z.center) edge (b.center);
+    \path (z.center) edge (c.center);
+    \draw (a.center) -- (b.center) -- (c.center) -- cycle;
+
+    \draw[pattern=north west lines] (a.center) -- (b.center) -- (z.center) --cycle;
+    \draw[pattern=dots] (b.center) -- (c.center) -- (z.center) --cycle;
+    \draw[pattern=crosshatch] (a.center) -- (c.center) -- (z.center) --cycle;
+\end{tikzpicture}

+ 11 - 0
documents/GeoTopo/figures/topology-graph-tetraeder.tex

@@ -0,0 +1,11 @@
+\begin{tikzpicture}
+    \tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
+    \node (z)[point] at (0,0) {};
+    \node (a)[point] at (90:1cm) {};
+    \node (b)[point] at (210:1cm) {};
+    \node (c)[point] at (330:1cm) {};
+    \path (z.center) edge (a.center);
+    \path (z.center) edge (b.center);
+    \path (z.center) edge (c.center);
+    \draw (a.center) -- (b.center) -- (c.center) -- cycle;
+\end{tikzpicture}

+ 4 - 2
documents/GeoTopo/shortcuts.sty

@@ -68,7 +68,9 @@
 \def\GL{\ensuremath{\mathrm{GL}}}
 \newcommand\mapsfrom{\mathrel{\reflectbox{\ensuremath{\mapsto}}}}
 \newcommand\dcup{\mathbin{\dot{\cup}}}
-\newcommand\obda{o.~B.~d.~A.}
-\newcommand\Obda{o.~B.~d.~A.}
+
+%%%Text %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\newcommand\obda{o.~B.~d.~A.\xspace}
+\newcommand\Obda{O.~B.~d.~A.\xspace}
 
 

+ 31 - 0
tikz/topology-graph-k-3-3/Makefile

@@ -0,0 +1,31 @@
+SOURCE = topology-graph-k-3-3
+DELAY = 80
+DENSITY = 300
+WIDTH = 512
+
+make:
+	pdflatex $(SOURCE).tex -output-format=pdf
+	make clean
+
+clean:
+	rm -rf  $(TARGET) *.class *.html *.log *.aux *.data *.gnuplot
+
+gif:
+	pdfcrop $(SOURCE).pdf
+	convert -verbose -delay $(DELAY) -loop 0 -density $(DENSITY) $(SOURCE)-crop.pdf $(SOURCE).gif
+	make clean
+
+png:
+	make
+	make svg
+	inkscape $(SOURCE).svg -w $(WIDTH) --export-png=$(SOURCE).png
+
+transparentGif:
+	convert $(SOURCE).pdf -transparent white result.gif
+	make clean
+
+svg:
+	#inkscape $(SOURCE).pdf --export-plain-svg=$(SOURCE).svg
+	pdf2svg $(SOURCE).pdf $(SOURCE).svg
+	# Necessary, as pdf2svg does not always create valid svgs:
+	inkscape $(SOURCE).svg --export-plain-svg=$(SOURCE).svg

+ 3 - 0
tikz/topology-graph-k-3-3/Readme.md

@@ -0,0 +1,3 @@
+Compiled example
+----------------
+![Example](topology-graph-k-3-3.png)

BIN
tikz/topology-graph-k-3-3/topology-graph-k-3-3.png


+ 15 - 0
tikz/topology-graph-k-3-3/topology-graph-k-3-3.tex

@@ -0,0 +1,15 @@
+\documentclass[varwidth=true, border=2pt]{standalone}
+\usepackage{tikz}
+
+\begin{document}
+    \begin{tikzpicture}
+        \tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
+
+        \foreach \x in {0,1,2}
+        \foreach \y in {0,1,2}{
+          \node (a)[point] at (\y,0) {};
+          \node (b)[point] at (\x,1) {};
+            \draw (a) -- (b);
+        }
+    \end{tikzpicture}
+\end{document}

+ 31 - 0
tikz/topology-graph-k-5/Makefile

@@ -0,0 +1,31 @@
+SOURCE = topology-graph-k-5
+DELAY = 80
+DENSITY = 300
+WIDTH = 512
+
+make:
+	pdflatex $(SOURCE).tex -output-format=pdf
+	make clean
+
+clean:
+	rm -rf  $(TARGET) *.class *.html *.log *.aux *.data *.gnuplot
+
+gif:
+	pdfcrop $(SOURCE).pdf
+	convert -verbose -delay $(DELAY) -loop 0 -density $(DENSITY) $(SOURCE)-crop.pdf $(SOURCE).gif
+	make clean
+
+png:
+	make
+	make svg
+	inkscape $(SOURCE).svg -w $(WIDTH) --export-png=$(SOURCE).png
+
+transparentGif:
+	convert $(SOURCE).pdf -transparent white result.gif
+	make clean
+
+svg:
+	#inkscape $(SOURCE).pdf --export-plain-svg=$(SOURCE).svg
+	pdf2svg $(SOURCE).pdf $(SOURCE).svg
+	# Necessary, as pdf2svg does not always create valid svgs:
+	inkscape $(SOURCE).svg --export-plain-svg=$(SOURCE).svg

+ 3 - 0
tikz/topology-graph-k-5/Readme.md

@@ -0,0 +1,3 @@
+Compiled example
+----------------
+![Example](topology-graph-k-5.png)

BIN
tikz/topology-graph-k-5/topology-graph-k-5.png


+ 22 - 0
tikz/topology-graph-k-5/topology-graph-k-5.tex

@@ -0,0 +1,22 @@
+\documentclass[varwidth=true, border=2pt]{standalone}
+\usepackage{tikz}
+
+\begin{document}
+    \newcommand\n{5}
+    \begin{tikzpicture}
+        \tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
+
+        \begin{scope}[rotate=17]
+        %the multiplication with floats is not possible. Thus I split the loop in two.
+        \foreach \number in {1,...,\n}{
+            \node[point] (N-\number) at ({\number*(360/\n)}:1.5cm) {};
+        }
+
+        \foreach \number in {1,...,\n}{
+            \foreach \y in {1,...,\n}{
+                \draw (N-\number) -- (N-\y);
+            }
+        }
+        \end{scope}
+    \end{tikzpicture}
+\end{document}

+ 31 - 0
tikz/topology-graph-simple/Makefile

@@ -0,0 +1,31 @@
+SOURCE = topology-graph-simple
+DELAY = 80
+DENSITY = 300
+WIDTH = 512
+
+make:
+	pdflatex $(SOURCE).tex -output-format=pdf
+	make clean
+
+clean:
+	rm -rf  $(TARGET) *.class *.html *.log *.aux *.data *.gnuplot
+
+gif:
+	pdfcrop $(SOURCE).pdf
+	convert -verbose -delay $(DELAY) -loop 0 -density $(DENSITY) $(SOURCE)-crop.pdf $(SOURCE).gif
+	make clean
+
+png:
+	make
+	make svg
+	inkscape $(SOURCE).svg -w $(WIDTH) --export-png=$(SOURCE).png
+
+transparentGif:
+	convert $(SOURCE).pdf -transparent white result.gif
+	make clean
+
+svg:
+	#inkscape $(SOURCE).pdf --export-plain-svg=$(SOURCE).svg
+	pdf2svg $(SOURCE).pdf $(SOURCE).svg
+	# Necessary, as pdf2svg does not always create valid svgs:
+	inkscape $(SOURCE).svg --export-plain-svg=$(SOURCE).svg

+ 3 - 0
tikz/topology-graph-simple/Readme.md

@@ -0,0 +1,3 @@
+Compiled example
+----------------
+![Example](topology-graph-simple.png)

BIN
tikz/topology-graph-simple/topology-graph-simple.png


+ 13 - 0
tikz/topology-graph-simple/topology-graph-simple.tex

@@ -0,0 +1,13 @@
+\documentclass[varwidth=true, border=2pt]{standalone}
+\usepackage{tikz}
+
+\begin{document}
+\begin{tikzpicture}
+    \tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
+    \node (a)[point] at (0,0) {};
+    \node (b)[point] at (1,0) {};
+    \path (a.center) edge [bend left]  (b.center);
+    \path (a.center) edge              (b.center);
+    \path (a.center) edge [bend right] (b.center);
+\end{tikzpicture}
+\end{document}

+ 31 - 0
tikz/topology-graph-tetraeder-area-2/Makefile

@@ -0,0 +1,31 @@
+SOURCE = topology-graph-tetraeder-area-2
+DELAY = 80
+DENSITY = 300
+WIDTH = 512
+
+make:
+	pdflatex $(SOURCE).tex -output-format=pdf
+	make clean
+
+clean:
+	rm -rf  $(TARGET) *.class *.html *.log *.aux *.data *.gnuplot
+
+gif:
+	pdfcrop $(SOURCE).pdf
+	convert -verbose -delay $(DELAY) -loop 0 -density $(DENSITY) $(SOURCE)-crop.pdf $(SOURCE).gif
+	make clean
+
+png:
+	make
+	make svg
+	inkscape $(SOURCE).svg -w $(WIDTH) --export-png=$(SOURCE).png
+
+transparentGif:
+	convert $(SOURCE).pdf -transparent white result.gif
+	make clean
+
+svg:
+	#inkscape $(SOURCE).pdf --export-plain-svg=$(SOURCE).svg
+	pdf2svg $(SOURCE).pdf $(SOURCE).svg
+	# Necessary, as pdf2svg does not always create valid svgs:
+	inkscape $(SOURCE).svg --export-plain-svg=$(SOURCE).svg

+ 3 - 0
tikz/topology-graph-tetraeder-area-2/Readme.md

@@ -0,0 +1,3 @@
+Compiled example
+----------------
+![Example](topology-graph-tetraeder-area-2.png)

BIN
tikz/topology-graph-tetraeder-area-2/topology-graph-tetraeder-area-2.png


+ 20 - 0
tikz/topology-graph-tetraeder-area-2/topology-graph-tetraeder-area-2.tex

@@ -0,0 +1,20 @@
+\documentclass[varwidth=true, border=2pt]{standalone}
+\usepackage{tikz}
+
+\begin{document}
+\begin{tikzpicture}
+    \tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
+    \node (z)[point] at (0,0) {};
+    \node (a)[point] at (90:1cm) {};
+    \node (b)[point] at (210:1cm) {};
+    \node (c)[point] at (330:1cm) {};
+    \node (d)[point] at (10:1.5cm) {};
+    \path (z.center) edge (a.center);
+    \path (z.center) edge (b.center);
+    \path (z.center) edge (c.center);
+    \draw (a.center) -- (b.center) -- (c.center) -- cycle;
+
+    \draw (a.center) -- (d.center);
+    \draw (c.center) -- (d.center);
+\end{tikzpicture}
+\end{document}

+ 31 - 0
tikz/topology-graph-tetraeder-area/Makefile

@@ -0,0 +1,31 @@
+SOURCE = topology-graph-tetraeder-area
+DELAY = 80
+DENSITY = 300
+WIDTH = 512
+
+make:
+	pdflatex $(SOURCE).tex -output-format=pdf
+	make clean
+
+clean:
+	rm -rf  $(TARGET) *.class *.html *.log *.aux *.data *.gnuplot
+
+gif:
+	pdfcrop $(SOURCE).pdf
+	convert -verbose -delay $(DELAY) -loop 0 -density $(DENSITY) $(SOURCE)-crop.pdf $(SOURCE).gif
+	make clean
+
+png:
+	make
+	make svg
+	inkscape $(SOURCE).svg -w $(WIDTH) --export-png=$(SOURCE).png
+
+transparentGif:
+	convert $(SOURCE).pdf -transparent white result.gif
+	make clean
+
+svg:
+	#inkscape $(SOURCE).pdf --export-plain-svg=$(SOURCE).svg
+	pdf2svg $(SOURCE).pdf $(SOURCE).svg
+	# Necessary, as pdf2svg does not always create valid svgs:
+	inkscape $(SOURCE).svg --export-plain-svg=$(SOURCE).svg

+ 3 - 0
tikz/topology-graph-tetraeder-area/Readme.md

@@ -0,0 +1,3 @@
+Compiled example
+----------------
+![Example](topology-graph-tetraeder-area.png)

BIN
tikz/topology-graph-tetraeder-area/topology-graph-tetraeder-area.png


+ 21 - 0
tikz/topology-graph-tetraeder-area/topology-graph-tetraeder-area.tex

@@ -0,0 +1,21 @@
+\documentclass[varwidth=true, border=2pt]{standalone}
+\usepackage{tikz}
+\usetikzlibrary{patterns}
+
+\begin{document}
+\begin{tikzpicture}
+    \tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
+    \node (z)[point] at (0,0) {};
+    \node (a)[point] at (90:1cm) {};
+    \node (b)[point] at (210:1cm) {};
+    \node (c)[point] at (330:1cm) {};
+    \path (z.center) edge (a.center);
+    \path (z.center) edge (b.center);
+    \path (z.center) edge (c.center);
+    \draw (a.center) -- (b.center) -- (c.center) -- cycle;
+
+    \draw[pattern=north west lines] (a.center) -- (b.center) -- (z.center) --cycle;
+    \draw[pattern=dots] (b.center) -- (c.center) -- (z.center) --cycle;
+    \draw[pattern=crosshatch] (a.center) -- (c.center) -- (z.center) --cycle;
+\end{tikzpicture}
+\end{document}

+ 31 - 0
tikz/topology-graph-tetraeder/Makefile

@@ -0,0 +1,31 @@
+SOURCE = topology-graph-tetraeder
+DELAY = 80
+DENSITY = 300
+WIDTH = 512
+
+make:
+	pdflatex $(SOURCE).tex -output-format=pdf
+	make clean
+
+clean:
+	rm -rf  $(TARGET) *.class *.html *.log *.aux *.data *.gnuplot
+
+gif:
+	pdfcrop $(SOURCE).pdf
+	convert -verbose -delay $(DELAY) -loop 0 -density $(DENSITY) $(SOURCE)-crop.pdf $(SOURCE).gif
+	make clean
+
+png:
+	make
+	make svg
+	inkscape $(SOURCE).svg -w $(WIDTH) --export-png=$(SOURCE).png
+
+transparentGif:
+	convert $(SOURCE).pdf -transparent white result.gif
+	make clean
+
+svg:
+	#inkscape $(SOURCE).pdf --export-plain-svg=$(SOURCE).svg
+	pdf2svg $(SOURCE).pdf $(SOURCE).svg
+	# Necessary, as pdf2svg does not always create valid svgs:
+	inkscape $(SOURCE).svg --export-plain-svg=$(SOURCE).svg

+ 3 - 0
tikz/topology-graph-tetraeder/Readme.md

@@ -0,0 +1,3 @@
+Compiled example
+----------------
+![Example](topology-graph-tetraeder.png)

BIN
tikz/topology-graph-tetraeder/topology-graph-tetraeder.png


+ 16 - 0
tikz/topology-graph-tetraeder/topology-graph-tetraeder.tex

@@ -0,0 +1,16 @@
+\documentclass[varwidth=true, border=2pt]{standalone}
+\usepackage{tikz}
+
+\begin{document}
+\begin{tikzpicture}
+    \tikzstyle{point}=[circle,thick,draw=black,fill=black,inner sep=0pt,minimum width=4pt,minimum height=4pt]
+    \node (z)[point] at (0,0) {};
+    \node (a)[point] at (90:1cm) {};
+    \node (b)[point] at (210:1cm) {};
+    \node (c)[point] at (330:1cm) {};
+    \path (z.center) edge (a.center);
+    \path (z.center) edge (b.center);
+    \path (z.center) edge (c.center);
+    \draw (a.center) -- (b.center) -- (c.center) -- cycle;
+\end{tikzpicture}
+\end{document}