|
@@ -54,7 +54,7 @@
|
|
|
H''(t, 2s-1) &\text{falls } \frac{1}{2} \leq s \leq 1\end{cases}$
|
|
|
|
|
|
$\Rightarrow$ $H$ ist stetig und Homotopie von $\gamma_1$ nach
|
|
|
- $\gamma_3$
|
|
|
+ $\gamma_3$.
|
|
|
\end{itemize}
|
|
|
$\qed$
|
|
|
\end{beweis}
|
|
@@ -177,7 +177,6 @@
|
|
|
|
|
|
\begin{figure}[htp]
|
|
|
\centering
|
|
|
- %\includegraphics[width=0.5\linewidth, keepaspectratio]{figures/todo/skizze-bemerkung-10-6.jpg}
|
|
|
\input{figures/topology-homotop-paths-2.tex}
|
|
|
\caption{Situation aus \cref{kor:bemerkung-10-6}}.
|
|
|
\label{fig:situation-bemerkung-10-6}
|
|
@@ -193,8 +192,8 @@
|
|
|
H_2(2t-1,s) &\text{falls } \frac{1}{2} \leq t \leq 1
|
|
|
\end{cases}\]
|
|
|
|
|
|
- Homotopie zwischen $\gamma_1 * \gamma_2$ und $\gamma_1' * \gamma_2 '$ (!)
|
|
|
- \todo[inline]{Hier fehlt noch was}
|
|
|
+ eine Homotopie zwischen
|
|
|
+ $\gamma_1 * \gamma_2$ und $\gamma_1' * \gamma_2 '$.
|
|
|
\end{beweis}
|
|
|
|
|
|
\section{Fundamentalgruppe}
|
|
@@ -327,7 +326,7 @@ Wenn $\pi_1(X,x) = \Set{e}$ für ein $x \in X$ gilt, dann wegen
|
|
|
\begin{beispiel}
|
|
|
\begin{bspenum}
|
|
|
\item $f:S^1 \hookrightarrow \mdr^2$ ist injektiv, aber
|
|
|
- $f_*:\pi_1(S^1, 1) \cong \mdz \rightarrow \pi_1(\mdr^2, 1) = 0 \Set{e}$
|
|
|
+ $f_*:\pi_1(S^1, 1) \cong \mdz \rightarrow \pi_1(\mdr^2, 1) = \Set{e}$
|
|
|
ist nicht injektiv
|
|
|
\item $f: \mdr \rightarrow S^1, t \mapsto (\cos 2 \pi t, \sin 2 \pi t)$
|
|
|
ist surjektiv, aber $f_*: \pi_1(\mdr, 0) = \Set{e} \rightarrow \pi_1(S^2, 1) \cong \mdz$
|
|
@@ -658,16 +657,6 @@ Haben wir Häufungspunkt definiert?}
|
|
|
mit $\tilde{\gamma}(0)=y$ und $p \circ \tilde{\gamma} = \gamma$.
|
|
|
\end{satz}
|
|
|
|
|
|
-\begin{beweis}
|
|
|
-Existenz: Siehe \Cref{fig:satz-12.6}.
|
|
|
- \begin{figure}[htp]
|
|
|
- \centering
|
|
|
- \includegraphics[width=0.6\linewidth, keepaspectratio]{figures/todo/skizze-1.jpg}
|
|
|
- \caption{Skizze für den Beweis von \cref{thm:ueberlagerung-weg-satz-12.6}}
|
|
|
- \label{fig:satz-12.6}
|
|
|
- \end{figure}
|
|
|
-\end{beweis}
|
|
|
-
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% Sebastians Mitschrieb vom 17.12.2013 %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
@@ -744,12 +733,14 @@ $p|V_j: V_j \rightarrow U$ Homöomorphismus.
|
|
|
nur von $[\gamma] \in \pi_1(X,x_0)$ ab.
|
|
|
|
|
|
Für geschlossene Wege $\gamma_0, \gamma_1$ um $x$ gilt:
|
|
|
+
|
|
|
\begin{align*}
|
|
|
\tilde{\gamma_0}(1) &= \tilde{\gamma_1}(1)\\
|
|
|
\Leftrightarrow [\tilde{\gamma_0} * \tilde{\gamma_1}^{-1}] &\in \pi_1(Y, y_0)\\
|
|
|
\Leftrightarrow [\gamma_0 * \gamma_1^{-1}] &\in p_* (\pi_1(Y,y_0))\\
|
|
|
- \Leftrightarrow [\gamma_0] \text{ und } [\gamma_1] \text{liegen in der selben Nebenklasse bzgl.} p_*(\pi_1(Y, y_0))
|
|
|
+ \Leftrightarrow [\gamma_0] \text{ und } [\gamma_1] &\text{liegen in der selben Nebenklasse bzgl.} p_*(\pi_1(Y, y_0))
|
|
|
\end{align*}
|
|
|
+
|
|
|
Zu $i \in \Set{0, \dots, d-1}$ gibt es Weg $\delta_i$ in
|
|
|
$Y$ mit $\delta_i(0) = y_0$ und $\delta_i(1) = y_i$\\
|
|
|
$\Rightarrow p \cup \delta_i$ ist geschlossener Weg in
|