|
|
@@ -0,0 +1,134 @@
|
|
|
+\documentclass{article}
|
|
|
+\usepackage[pdftex,active,tightpage]{preview}
|
|
|
+\setlength\PreviewBorder{2mm}
|
|
|
+\usepackage{tikz}
|
|
|
+\usetikzlibrary{shapes,snakes,calc}
|
|
|
+\usepackage{amsmath,amssymb}
|
|
|
+\begin{document}
|
|
|
+\begin{preview}
|
|
|
+\begin{tikzpicture}[%
|
|
|
+ auto,
|
|
|
+ example/.style={
|
|
|
+ rectangle,
|
|
|
+ draw=blue,
|
|
|
+ thick,
|
|
|
+ fill=blue!20,
|
|
|
+ text width=4.5em,
|
|
|
+ align=center,
|
|
|
+ rounded corners,
|
|
|
+ minimum height=2em
|
|
|
+ },
|
|
|
+ algebraicName/.style={
|
|
|
+ text width=7em,
|
|
|
+ align=center,
|
|
|
+ minimum height=2em
|
|
|
+ },
|
|
|
+ explanation/.style={
|
|
|
+ text width=10em,
|
|
|
+ align=left,
|
|
|
+ minimum height=3em
|
|
|
+ }
|
|
|
+ ]
|
|
|
+ \draw[fill=yellow!20,yellow!20] (-1.85, 0.55) rectangle (13.4,-6.85);
|
|
|
+ \draw[fill=black!20,black!20] ( 7.53,-1.40) rectangle (13.0,-6.45);
|
|
|
+ \draw[fill=lime!20,lime!20] (-1.75, 0.45) rectangle (7.3,-6.75);
|
|
|
+ \draw[fill=purple!20,purple!20] (-1.65,-1.40) rectangle (7.2,-6.65);
|
|
|
+ \draw[fill=blue!20,blue!20] (-1.55,-3.55) rectangle (7.1,-6.55);
|
|
|
+ \draw[fill=red!20,red!20] (-1.45,-4.65) rectangle (7.0,-6.45);
|
|
|
+ \draw (0, 0) node[algebraicName] (A) {Gruppe}
|
|
|
+ (2, 0) node[explanation] (B) {
|
|
|
+ \begin{minipage}{0.90\textwidth}
|
|
|
+ \tiny
|
|
|
+ \begin{itemize}
|
|
|
+ \itemsep -0.3em
|
|
|
+ \item Assoziativit\"at
|
|
|
+ \item Neutrales Element
|
|
|
+ \item Inverse Elemente
|
|
|
+ \end{itemize}
|
|
|
+ \end{minipage}
|
|
|
+ }
|
|
|
+ (0,-2) node[algebraicName] (C) {abelsche Gruppe}
|
|
|
+ (2,-2) node[explanation] (X) {
|
|
|
+ \begin{minipage}{150\textwidth}
|
|
|
+ \tiny
|
|
|
+ \begin{itemize}
|
|
|
+ \itemsep -0.3em
|
|
|
+ \item kommutativ
|
|
|
+ \end{itemize}
|
|
|
+ \end{minipage}
|
|
|
+ }
|
|
|
+ (2, -3) node[example, draw=purple, fill=purple!15] (D) {$(\mathbb{Z}, +)$}
|
|
|
+ (4, -3) node[example, draw=purple, fill=purple!15] (E) {$(\mathbb{Q} \setminus \{0\}, \cdot)$}
|
|
|
+
|
|
|
+ (10,-6) node[example, draw=black, fill=black!15] (F) {$(\mathbb{N}_0, +)$}
|
|
|
+ (12,-6) node[example, draw=black, fill=black!15] (G) {$(\mathbb{N}_0, \cdot)$}
|
|
|
+
|
|
|
+ (0,-4) node[algebraicName] (H) {Ring}
|
|
|
+ (2,-4.1) node[explanation] (X) {
|
|
|
+ \begin{minipage}{150\textwidth}
|
|
|
+ \tiny
|
|
|
+ \begin{itemize}
|
|
|
+ \itemsep -0.3em
|
|
|
+ \item Zwei Verkn\"upfungen
|
|
|
+ \item $(R, +)$ ist abelsche Gruppe
|
|
|
+ \item $(R, \cdot)$ ist Halbgruppe
|
|
|
+ \item Distributivgesetze
|
|
|
+ \end{itemize}
|
|
|
+ \end{minipage}
|
|
|
+ }
|
|
|
+ (6,-4) node[example, draw=blue, fill=blue!15] (I) {$(\mathbb{Z}, +, \cdot)$}
|
|
|
+
|
|
|
+ (0,-5) node[algebraicName] (J) {K\"orper}
|
|
|
+ (2,-5) node[explanation] (X) {
|
|
|
+ \begin{minipage}{150\textwidth}
|
|
|
+ \tiny
|
|
|
+ \begin{itemize}
|
|
|
+ \itemsep -0.3em
|
|
|
+ \item $(\mathbb{K} \setminus \{0\}, \cdot)$ ist abelsche Gruppe
|
|
|
+ \end{itemize}
|
|
|
+ \end{minipage}
|
|
|
+ }
|
|
|
+ (0,-6) node[example, draw=red, fill=red!15] (K) {$(\mathbb{Q}, +, \cdot)$}
|
|
|
+ (2,-6) node[example, draw=red, fill=red!15] (L) {$(\mathbb{R}, +, \cdot)$}
|
|
|
+ (4,-6) node[example, draw=red, fill=red!15] (M) {$(\mathbb{C}, +, \cdot)$}
|
|
|
+ (6,-6) node[example, draw=red, fill=red!15] (N) {$\mathbb{Z} / p \mathbb{Z}$}
|
|
|
+
|
|
|
+
|
|
|
+ (9, 0) node[algebraicName] (O) {Halbgruppe}
|
|
|
+ (12,0) node[explanation] (X) {
|
|
|
+ \begin{minipage}{150\textwidth}
|
|
|
+ \tiny
|
|
|
+ \begin{itemize}
|
|
|
+ \itemsep -0.3em
|
|
|
+ \item Eine Verkn\"upfung
|
|
|
+ \item Abgeschlossenheit
|
|
|
+ \end{itemize}
|
|
|
+ \end{minipage}
|
|
|
+ }
|
|
|
+ (12,-1) node[example, draw=yellow, fill=yellow!15] (P) {$(\emptyset, \emptyset)$}
|
|
|
+ (9, -2) node[algebraicName] (Q) {kommutative Halbgruppe}
|
|
|
+ (12,-2) node[explanation] (X) {
|
|
|
+ \begin{minipage}{150\textwidth}
|
|
|
+ \tiny
|
|
|
+ \begin{itemize}
|
|
|
+ \itemsep -0.3em
|
|
|
+ \item kommutativ
|
|
|
+ \end{itemize}
|
|
|
+ \end{minipage}
|
|
|
+ };
|
|
|
+
|
|
|
+ % Körper
|
|
|
+ \draw[red,thick] ($(J.north west)+(-0.1,0.0)$) rectangle ($(N.south east)+(0.1,-0.1)$);
|
|
|
+ % Ring
|
|
|
+ \draw[blue, thick] ($(H.north west)+(-0.2,0.1)$) rectangle ($(N.south east)+(0.2,-0.2)$);
|
|
|
+ % abelsche Gruppe
|
|
|
+ \draw[purple, thick] ($(C.north west)+(-0.3,0.1)$) rectangle ($(N.south east)+(0.3,-0.3)$);
|
|
|
+ % Gruppe
|
|
|
+ \draw[lime, thick] ($(A.north west)+(-0.4,0.1)$) rectangle ($(N.south east)+(0.4,-0.4)$);
|
|
|
+ % Halbgruppe
|
|
|
+ \draw[yellow, thick] ($(A.north west)+(-0.5,0.2)$) rectangle ($(G.south east)+(0.5,-0.5)$);
|
|
|
+ % Halbgruppe
|
|
|
+ \draw[black, thick] ($(Q.north west)+(-0.1,0.1)$) rectangle ($(G.south east)+(0.1,-0.1)$);
|
|
|
+\end{tikzpicture}
|
|
|
+\end{preview}
|
|
|
+\end{document}
|