Sfoglia il codice sorgente

Klausur 5, Aufgabe 5 angefangen zu lösen

Martin Thoma 12 anni fa
parent
commit
cbf6c909bb

+ 18 - 5
documents/Numerik/Klausur5/Aufgabe5.tex

@@ -24,10 +24,23 @@ symmetrische Quadraturformel in (A).
 
 Für (B) müssen die Ordnungsbedingungen gelten:
 \begin{align}
-    \nicefrac{1}{1} &\stackrel{!}{=} b_1 + b_2 + b_3\\
-    \nicefrac{1}{2} &\stackrel{!}{=} b_2 \cdot c_2 + b_3 c_3\\
-    \nicefrac{1}{3} &\stackrel{!}{=} b_2 \cdot c_2^2 + b_3 c_3^2\\
-    \nicefrac{1}{4} &\stackrel{!}{=} b_2 \cdot c_2^3 + b_3 c_3^3
+    \nicefrac{1}{1} &\stackrel{!}{=} b_1 + b_2 + b_3\label{eq:i}\\
+    \nicefrac{1}{2} &\stackrel{!}{=} b_2 \cdot c_2 + b_3 c_3\label{eq:ii}\\
+    \nicefrac{1}{3} &\stackrel{!}{=} b_2 \cdot c_2^2 + b_3 c_3^2\label{eq:iii}\\
+    \nicefrac{1}{4} &\stackrel{!}{=} b_2 \cdot c_2^3 + b_3 c_3^3\label{eq:iv}\\
+    \stackrel{\ref{eq:ii}}{\Rightarrow} \frac{\nicefrac{1}{2} - b_3 c_3}{c_2}&\stackrel{!}{=} b_2 \label{eq:ii2}\\
+    \stackrel{\ref{eq:ii2} \text{ in } \ref{eq:iii}}{\Rightarrow} \nicefrac{1}{3} &\stackrel{!}{=} (\nicefrac{1}{2} - b_3 c_3) \cdot c_2 + b_3 c_3^2\label{eq:iii2}\\
+    \Leftrightarrow \nicefrac{1}{3} - \nicefrac{1}{2} \cdot c_2 &\stackrel{!}{=} b_3 (- c_3 c_2 + c_3^2)\\
+    \Leftrightarrow \frac{\nicefrac{1}{3} - \nicefrac{1}{2} \cdot c_2}{c_3^2 - c_3 c_2} &\stackrel{!}{=} b_3 \label{eq:iii3}\\
+    \stackrel{\ref{eq:ii2} \text{ in } \ref{eq:iv}}{\Rightarrow} \nicefrac{1}{4} &\stackrel{!}{=} (\nicefrac{1}{2} - b_3 c_3) \cdot c_2^2 + b_3 c_3^3\label{eq:iv2}\\
+    \Leftrightarrow \nicefrac{1}{4} - \nicefrac{1}{2} c_2^2&\stackrel{!}{=} b_3 (c_3^3 - c_3 \cdot c_2^2) \label{eq:iv2}\\
+    \stackrel{\ref{eq:iii3} \text{ in } \ref{eq:iv2}}{\Rightarrow} \nicefrac{1}{4} - \nicefrac{1}{2} c_2^2&\stackrel{!}{=} \frac{\nicefrac{1}{3} - \nicefrac{1}{2} \cdot c_2}{c_3^2 - c_3 c_2} (c_3^3 - c_3 \cdot c_2^2)\\
+    \Leftrightarrow \frac{1}{2} \left (\frac{1}{2} - c_2^2 \right ) &= \frac{(\nicefrac{1}{3} - \nicefrac{1}{2} \cdot c_2)(c_3^2 - c_2^2)}{c_3 - c_2}\\
+    \Leftrightarrow \frac{1}{2} - c_2^2 &= (\nicefrac{2}{3} - c_2)(c_3 + c_2)\\
+    \Leftrightarrow \frac{1}{2} - c_2^2 &= \nicefrac{2}{3} c_3 + \nicefrac{2}{3} c_2 - c_2 c_3 - c_2^2\\
+    \Leftrightarrow \frac{1}{2} - \frac{2}{3} c_2 &= \nicefrac{2}{3} c_3- c_2 c_3\\
+    \Leftrightarrow \frac{1}{2} - \frac{2}{3} c_2 &= c_3(\nicefrac{2}{3}- c_2)\\
+    \Leftrightarrow c_3 &= \frac{\frac{1}{2} - \frac{2}{3} c_2}{\nicefrac{2}{3}- c_2} = \frac{2c_2-\nicefrac{3}{2}}{3c_2 - 2}\\
 \end{align}
 
 Für (C) muss zusätzlich gelten:
@@ -35,4 +48,4 @@ Für (C) muss zusätzlich gelten:
     \nicefrac{1}{5} &\stackrel{!}{=} b_2 \cdot c_2^4 + b_3 c_3^4
 \end{align}
 
-TODO: Und weiter?
+TODO

BIN
documents/Numerik/Klausur5/Klausur5.pdf