|
@@ -306,110 +306,20 @@ As you can easily verify, only $x_1$ is a minimum of $d_{P,f}$.
|
|
|
|
|
|
|
|
|
\subsection{Number of points with minimal distance}
|
|
|
-\subsubsection{Two points with minimal distance}
|
|
|
-Quadratic functions can have two points with minimal distance.
|
|
|
-
|
|
|
-For example, let $f(x) = x^2$ and $P = (0,5)$. Then $P_{f,1} = (\sqrt{\frac{9}{2}}, \frac{9}{2})$
|
|
|
-has minimal distance to $P$, but also $P_{f,2} = (-\sqrt{\frac{9}{2}}, \frac{9}{2})$:
|
|
|
-
|
|
|
-\begin{proof}
|
|
|
- \begin{align}
|
|
|
- d_{P,f}(x) &= \sqrt{(x-x_P)^2 + (f(x)-y_p)^2}\\
|
|
|
- &= \sqrt{x^2 + (x^2-5)^2}\\
|
|
|
- &= \sqrt{x^2 + x^4-10x^2+25}\\
|
|
|
- &= \sqrt{x^4 -9x^2 + 25}\\
|
|
|
- &= \sqrt{x^4 -9x^2 + \frac{81}{4}+\frac{19}{4}}\\
|
|
|
- &= \sqrt{\left (x^2 - \frac{9}{2} \right )^2 + \frac{19}{4}}
|
|
|
- \end{align}
|
|
|
-
|
|
|
- Obviously, $d_{P,f}$ is minimal for $x = \pm \sqrt{\frac{9}{2}} \qed$
|
|
|
-\end{proof}
|
|
|
-
|
|
|
-\begin{figure}[htp]
|
|
|
- \centering
|
|
|
- \begin{tikzpicture}
|
|
|
- \begin{axis}[
|
|
|
- %legend pos=north west,
|
|
|
- axis x line=middle,
|
|
|
- axis y line=middle,
|
|
|
- grid = major,
|
|
|
- width=0.6\linewidth,
|
|
|
- height=8cm,
|
|
|
- grid style={dashed, gray!30},
|
|
|
- xmin=-3, % start the diagram at this x-coordinate
|
|
|
- xmax= 3, % end the diagram at this x-coordinate
|
|
|
- ymin= 0, % start the diagram at this y-coordinate
|
|
|
- ymax= 5, % end the diagram at this y-coordinate
|
|
|
- axis background/.style={fill=white},
|
|
|
- xlabel=$x$,
|
|
|
- ylabel=$y$,
|
|
|
- %xticklabels={-2,-1.6,...,7},
|
|
|
- %yticklabels={-8,-7,...,8},
|
|
|
- tick align=outside,
|
|
|
- minor tick num=-3,
|
|
|
- enlargelimits=true,
|
|
|
- tension=0.08]
|
|
|
- \addplot[domain=-3:3, thick,samples=50, orange] {x*x};
|
|
|
- \draw (axis cs:0,5) circle[radius=2.17];
|
|
|
- \draw[red, thick] (axis cs:0,5) -- (axis cs:2.121,4.5);
|
|
|
- \draw[red, thick] (axis cs:0,5) -- (axis cs:-2.121,4.5);
|
|
|
- \addlegendentry{$f(x)=x^2$}
|
|
|
- \end{axis}
|
|
|
- \end{tikzpicture}
|
|
|
- \caption{Two points with minimal distance}
|
|
|
-\end{figure}
|
|
|
-
|
|
|
-\subsubsection{Three points with minimal distance}
|
|
|
-As discussed before, there cannot be more than 3 points on the graph
|
|
|
-of $f$ next to $P$.
|
|
|
-
|
|
|
-\todo[inline]{But can there be three points? O.b.d.A: $a > 0$.
|
|
|
-As $c$ is moves the curve only up and down, we can o.b.d.A assume
|
|
|
-that $c=0$.
|
|
|
+\begin{theorem}
|
|
|
+ A point $P$ has either one or two points on the graph of a
|
|
|
+ quadratic function $f$ that are closest to $P$.
|
|
|
+\end{theorem}
|
|
|
|
|
|
-$x=-\frac{b}{2a}$ is the minimum of $f$. If there are 3 points, this will
|
|
|
-be one of them. The other two ones are symmetric by an axis through
|
|
|
-$-\frac{b}{2a}$}
|
|
|
+In the following, I will do some transformations with $f = f_0$ and
|
|
|
+$P = P_0$ .
|
|
|
|
|
|
-\begin{figure}[htp]
|
|
|
- \centering
|
|
|
- \begin{tikzpicture}
|
|
|
- \begin{axis}[
|
|
|
- legend pos=north west,
|
|
|
- axis x line=middle,
|
|
|
- axis y line=middle,
|
|
|
- grid = major,
|
|
|
- width=0.8\linewidth,
|
|
|
- height=8cm,
|
|
|
- grid style={dashed, gray!30},
|
|
|
- xmin=-0.7, % start the diagram at this x-coordinate
|
|
|
- xmax= 0.7, % end the diagram at this x-coordinate
|
|
|
- ymin=-0.25, % start the diagram at this y-coordinate
|
|
|
- ymax= 0.5, % end the diagram at this y-coordinate
|
|
|
- axis background/.style={fill=white},
|
|
|
- xlabel=$x$,
|
|
|
- ylabel=$y$,
|
|
|
- %xticklabels={-2,-1.6,...,7},
|
|
|
- %yticklabels={-8,-7,...,8},
|
|
|
- tick align=outside,
|
|
|
- minor tick num=-3,
|
|
|
- enlargelimits=true,
|
|
|
- tension=0.08]
|
|
|
- \addplot[domain=-0.7:0.7, thick,samples=50, orange] {x*x};
|
|
|
- \draw (axis cs:0,0.5) circle[radius=0.5];
|
|
|
- \draw[red, thick] (axis cs:0,0.5) -- (axis cs:0.101,0.0102);
|
|
|
- \draw[red, thick] (axis cs:0,0.5) -- (axis cs:-0.101,0.0102);
|
|
|
- \draw[red, thick] (axis cs:0,0.5) -- (axis cs:0,0);
|
|
|
- \addlegendentry{$f(x)=x^2$}
|
|
|
- \end{axis}
|
|
|
- \end{tikzpicture}
|
|
|
- \caption{3 points with minimal distance?}
|
|
|
-\end{figure}
|
|
|
+Moving $f_0$ and $P_0$ simultaneously in $x$ or $y$ direction does
|
|
|
+not change the minimum distance. Furthermore, we can find the
|
|
|
+points with minimum distance on the moved situation and calculate
|
|
|
+the minimum points in the original situation.
|
|
|
|
|
|
-When move the $f$ and $P$ simultaneously in $x$ direction, you will not change the
|
|
|
-results.
|
|
|
-
|
|
|
-First of all, you move $f_0$ by $\frac{b}{2a}$, so
|
|
|
+First of all, we move $f_0$ and $P_0$ by $\frac{b}{2a}$ in $x$ direction, so
|
|
|
\[f_1(x) = ax^2 - \frac{b^2}{4a} + c \;\;\;\text{ and }\;\;\; P_1 = \left (x_p+\frac{b}{2a},\;\; y_p \right )\]
|
|
|
|
|
|
Because:
|
|
@@ -425,20 +335,28 @@ Then move $f_1$ and $P_1$ by $\frac{b^2}{4a}-c$ in $y$ direction. You get:
|
|
|
\[f_2(x) = ax^2\;\;\;\text{ and }\;\;\; P_2 = \left (x_p+\frac{b}{2a},\;\; y_p+\frac{b^2}{4a}-c \right )\]
|
|
|
|
|
|
As $f(x) = ax^2$ is symmetric to the $y$ axis, only points
|
|
|
-$P = (0, y_p)$ could possilby have three minima.
|
|
|
+$P = (0, w)$ could possilby have three minima.
|
|
|
|
|
|
Then compute:
|
|
|
\begin{align}
|
|
|
- d_{P,f}(x) &= \sqrt{(x-x_P)^2 + (f(x)-y_p)^2}\\
|
|
|
- &= \sqrt{x^2 + (ax^2-y_p)^2}\\
|
|
|
- &= \sqrt{x^2 + a^2 x^4-2ay_p x^2+y_p^2}\\
|
|
|
- &= \sqrt{a^2 x^4 + (1-2ay_p) x^2 + y_p^2}\\
|
|
|
- &= \sqrt{\left (a^2 x^2 + \frac{1-2 a y_p}{2} \right )^2 + y_p^2 - (1-2 a y_p)^2}\\
|
|
|
- &= \sqrt{\left (a^2 x^2 + \nicefrac{1}{2}-a y_p \right )^2 + (y_p^2 - (1-2 a y_p)^2)}\\
|
|
|
+ d_{P,f}(x) &= \sqrt{(x-x_{P})^2 + (f(x)-w)^2}\\
|
|
|
+ &= \sqrt{x^2 + (ax^2-w)^2}\\
|
|
|
+ &= \sqrt{x^2 + a^2 x^4-2aw x^2+w^2}\\
|
|
|
+ &= \sqrt{a^2 x^4 + (1-2aw) x^2 + w^2}\\
|
|
|
+ &= \sqrt{\left (a^2 x^2 + \frac{1-2 a w}{2} \right )^2 + w^2 - (1-2 a w)^2}\\
|
|
|
+ &= \sqrt{\left (a^2 x^2 + \nicefrac{1}{2}-a w \right )^2 + (w^2 - (1-2 a w)^2)}\\
|
|
|
\end{align}
|
|
|
|
|
|
-For $y_p \leq \nicefrac{1}{2a}$ you only have $x = 0$ as a minimum.
|
|
|
-For all other points, there are exactly two minima.
|
|
|
+For $w \leq \nicefrac{1}{2a}$ you only have $x = 0$ as a minimum.
|
|
|
+For all other points $P = (0, w)$, there are exactly two minima.
|
|
|
+
|
|
|
+So the solution is given by
|
|
|
+
|
|
|
+\[\underset{x\in\mdr}{\arg \min d_{P,f}(x)} = \begin{cases}
|
|
|
+ x_1 = todo \text{ and } x_2 = todo &\text{if } x_P = - \frac{b}{2a} \text{ and } y_p + \frac{b^2}{4a} - c > \frac{1}{2a} \\
|
|
|
+ x = todo &\text{if } x_P = - \frac{b}{2a} \text{ and } y_p + \frac{b^2}{4a} - c \leq \frac{1}{2a} \\
|
|
|
+ x = todo &\text{if } x_P \neq - \frac{b}{2a}
|
|
|
+ \end{cases}\]
|
|
|
|
|
|
\clearpage
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|