|
@@ -196,11 +196,11 @@ U_i = \Set{(x_0: \dots : x_n) \in \praum^n(\mdr) | x_i \neq 0} &\rightarrow \mdr
|
|
|
\begin{figure}[ht]
|
|
|
\centering
|
|
|
\subfloat[$F(x,y) = y^2 - x^3$]{
|
|
|
- \input{figures/3d-function-semicubical-parabola.tex}
|
|
|
+ \resizebox{0.45\linewidth}{!}{\input{figures/3d-function-semicubical-parabola.tex}}
|
|
|
\label{fig:semicubical-parabola-2d}
|
|
|
}%
|
|
|
\subfloat[$y^2 - ax^3 = 0$]{
|
|
|
- \input{figures/2d-semicubical-parabola.tex}
|
|
|
+ \resizebox{0.45\linewidth}{!}{\input{figures/2d-semicubical-parabola.tex}}
|
|
|
\label{fig:semicubical-parabola-3d}
|
|
|
}%
|
|
|
\label{Neilsche-Parabel}
|
|
@@ -389,11 +389,11 @@ $\partial X$ ist eine Mannigfaltigkeit der Dimension $n-1$.
|
|
|
\begin{figure}
|
|
|
\centering
|
|
|
\subfloat[Kugelkooridnaten]{
|
|
|
- \includegraphics[width=0.4\linewidth, keepaspectratio]{figures/spherical-coordinates.pdf}
|
|
|
+ \includegraphics[width=0.45\linewidth, keepaspectratio]{figures/spherical-coordinates.pdf}
|
|
|
\label{fig:spherical-coordinates}
|
|
|
}%
|
|
|
\subfloat[Rotationskörper]{
|
|
|
- \input{figures/solid-of-revolution.tex}
|
|
|
+ \resizebox{0.45\linewidth}{!}{\input{figures/solid-of-revolution.tex}}
|
|
|
\label{fig:solid-of-revolution}
|
|
|
}%
|
|
|
|
|
@@ -688,7 +688,7 @@ $\partial X$ ist eine Mannigfaltigkeit der Dimension $n-1$.
|
|
|
\input{figures/topology-triangle-to-line.tex}
|
|
|
\item \todo[inline]{Wozu dient das Beispiel?}
|
|
|
|
|
|
- \input{figures/topology-2.tex}
|
|
|
+ \resizebox{0.9\linewidth}{!}{\input{figures/topology-2.tex}}
|
|
|
\end{enumerate}
|
|
|
\end{beispiel}
|
|
|
|