|
@@ -86,15 +86,23 @@ But minimizing $d_{P,f}$ is the same as minimizing $d_{P,f}^2$:
|
|
|
&= x_p^2 - 2x_p x + x^2 + y_p^2 - 2y_p f(x) + f(x)^2
|
|
|
\end{align}
|
|
|
|
|
|
-\todo[inline]{hat dieser Satz einen Namen? kann ich den irgendwo zitieren? Ich habe ihn aus \href{https://github.com/MartinThoma/LaTeX-examples/tree/master/documents/Analysis I}{meinem Analysis I Skript} (Satz 22.3).}
|
|
|
-\begin{theorem}[Minima of polynomial functions]\label{thm:minima-of-polynomials}
|
|
|
- Let $n \in \mathbb{N}, n \geq 2$, $f$ polynomial function of
|
|
|
- degree $n$, $x_0 \in \mathbb{R}$, \\
|
|
|
- $f'(x_0) = f''(x_0) = \dots = f^{(n-1)} (x_0) = 0$
|
|
|
- and $f^{(n)} > 0$.
|
|
|
-
|
|
|
- Then $x_0$ is a local minimum of $f$.
|
|
|
+\todo[inline]{Hat dieser Satz einen Namen? Gibt es ein gutes Buch,
|
|
|
+aus dem ich den zitieren kann? Ich habe ihn aus \href{https://github.com/MartinThoma/LaTeX-examples/tree/master/documents/Analysis I}{meinem Analysis I Skript} (Satz 21.5).}
|
|
|
+\begin{theorem}\label{thm:required-extremum-property}
|
|
|
+ Let $x_0$ be a relative extremum of $f$.
|
|
|
+
|
|
|
+ Then: $f'(x_0) = 0$.
|
|
|
\end{theorem}
|
|
|
+
|
|
|
+%bzw. 22.3
|
|
|
+%\begin{theorem}[Minima of polynomial functions]\label{thm:minima-of-polynomials}
|
|
|
+% Let $n \in \mathbb{N}, n \geq 2$, $f$ polynomial function of
|
|
|
+% degree $n$, $x_0 \in \mathbb{R}$, \\
|
|
|
+% $f'(x_0) = f''(x_0) = \dots = f^{(n-1)} (x_0) = 0$
|
|
|
+% and $f^{(n)} > 0$.
|
|
|
+%
|
|
|
+% Then $x_0$ is a local minimum of $f$.
|
|
|
+%\end{theorem}
|
|
|
\clearpage
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
@@ -251,28 +259,36 @@ $b, c \in \mdr$ be a quadratic function.
|
|
|
\end{figure}
|
|
|
|
|
|
\subsection{Calculate points with minimal distance}
|
|
|
-We use Theorem~\ref{thm:minima-of-polynomials}:\nobreak
|
|
|
+In this case, $d_{P,f}^2$ is polynomial of degree 4.
|
|
|
+We use Theorem~\ref{thm:required-extremum-property}:\nobreak
|
|
|
\begin{align}
|
|
|
- 0 &\stackrel{!}{=} (d_{P,f}^2)'\\
|
|
|
- &= -2 x_p + 2x -2y_p f'(x) + \left (f(x)^2 \right )'\label{eq:minimizingFirstDerivative}\\
|
|
|
+ 0 &\overset{!}{=} (d_{P,f}^2)'\\
|
|
|
+ &= -2 x_p + 2x -2y_p f'(x) + \left (f(x)^2 \right )'\\
|
|
|
+ &= -2 x_p + 2x -2y_p f'(x) + 2 f(x) \cdot f'(x) \rlap{\hspace*{3em}(chain rule)}\label{eq:minimizingFirstDerivative}\\
|
|
|
&= -2 x_p + 2x -2y_p (2ax+b) + ((ax^2+bx+c)^2)'\\
|
|
|
&= -2 x_p + 2x -2y_p \cdot 2ax-2 y_p b + (a^2 x^4+2 a b x^3+2 a c x^2+b^2 x^2+2 b c x+c^2)'\\
|
|
|
&= -2 x_p + 2x -4y_p ax-2 y_p b + (4a^2 x^3 + 6 ab x^2 + 4acx + 2b^2 x + 2bc)\\
|
|
|
- &= 4a^2 x^3 + 6 ab x^2 + 2(1 -2y_p a+ 2ac + b^2)x +2(bc-by_p-x_p)\\
|
|
|
- 0 &\stackrel{!}{=}(d_{P,f}^2)''\\
|
|
|
- &= 12a^2 x^2 + 12abx + 2(1 -2y_p a+ 2ac + b^2)
|
|
|
+ &= 4a^2 x^3 + 6 ab x^2 + 2(1 -2y_p a+ 2ac + b^2)x +2(bc-by_p-x_p)
|
|
|
\end{align}
|
|
|
|
|
|
+%\begin{align}
|
|
|
+% 0 &\overset{!}{=}(d_{P,f}^2)''\\
|
|
|
+% &= 2 - 2y_p f''(x) + \left ( 2 f(x) \cdot f'(x) \right )' \rlap{\hspace*{3em}(Eq. \ref{eq:minimizingFirstDerivative})}\\
|
|
|
+% &= 2 - 2y_p f''(x) + 2 \cdot \left ( f'(x) \cdot f'(x) + f(x) \cdot f''(x) \right ) \rlap{\hspace*{3em}(product rule)}\\
|
|
|
+% &= 2 - 2y_p f''(x) + 2 \cdot \left ( f'(x)^2 + f(x) \cdot f''(x) \right )\\
|
|
|
+% &= 12a^2 x^2 + 12abx + 2(1 -2y_p a+ 2ac + b^2)
|
|
|
+%\end{align}
|
|
|
|
|
|
|
|
|
This is an algebraic equation of degree 3.
|
|
|
-There can be up to 3 solutions in such an equation. An example is
|
|
|
+There can be up to 3 solutions in such an equation. Those solutions
|
|
|
+can be found with a closed formula.
|
|
|
|
|
|
-\begin{align*}
|
|
|
- a &= 1 & b &= 0 & c &= 1 & x_p &= 0 & y_p &= 1
|
|
|
-\end{align*}
|
|
|
+\todo[inline]{Where are those closed formulas?}
|
|
|
|
|
|
-So $f(x) = x^2 + 1$ and $P(0, 1)$.
|
|
|
+\begin{example}
|
|
|
+ Let $a = 1, b = 0, c= 1, x_p= 0, y_p = 1$.
|
|
|
+ So $f(x) = x^2 + 1$ and $P(0, 1)$.
|
|
|
|
|
|
\begin{align}
|
|
|
0 &\stackrel{!}{=} 4 x^3 - 2x\\
|
|
@@ -281,6 +297,7 @@ So $f(x) = x^2 + 1$ and $P(0, 1)$.
|
|
|
\end{align}
|
|
|
|
|
|
As you can easily verify, only $x_1$ is a minimum of $d_{P,f}$.
|
|
|
+\end{example}
|
|
|
|
|
|
|
|
|
\subsection{Number of points with minimal distance}
|
|
@@ -288,10 +305,18 @@ It is obvious that a quadratic function can have two points with
|
|
|
minimal distance.
|
|
|
|
|
|
For example, let $f(x) = x^2$ and $P = (0,5)$. Then $P_{f,1} \approx (2.179, 2.179^2)$
|
|
|
-has minimal distance to $P$, but also $P_{f,2}\approx (-2.179, 2.179^2)$.
|
|
|
+has minimal distance to $P$, but also $P_{f,2}\approx (-2.179, 2.179^2)$.\todo{exact example?}
|
|
|
+
|
|
|
+As discussed before, there cannot be more than 3 points on the graph
|
|
|
+of $f$ next to $P$.
|
|
|
|
|
|
-Obviously, there cannot be more than three points with minimal distance.
|
|
|
-But can there be three points?
|
|
|
+\todo[inline]{But can there be three points? O.b.d.A: $a > 0$.
|
|
|
+As $c$ is moves the curve only up and down, we can o.b.d.A assume
|
|
|
+that $c=0$.
|
|
|
+
|
|
|
+$x=-\frac{b}{2a}$ is the minimum of $f$. If there are 3 points, this will
|
|
|
+be one of them. The other two ones are symmetric by an axis through
|
|
|
+$-\frac{b}{2a}$}
|
|
|
|
|
|
\begin{figure}[htp]
|
|
|
\centering
|
|
@@ -328,7 +353,7 @@ But can there be three points?
|
|
|
\caption{3 points with minimal distance?}
|
|
|
\end{figure}
|
|
|
|
|
|
-\todo[inline]{write this}
|
|
|
+\clearpage
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% Cubic %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
@@ -337,29 +362,72 @@ Let $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ be a cubic function
|
|
|
with $a \in \mdr \setminus \Set{0}$ and
|
|
|
$b, c, d \in \mdr$ be a function.
|
|
|
|
|
|
-\subsection{Number of points with minimal distance}
|
|
|
-
|
|
|
-\todo[inline]{Write this}
|
|
|
-
|
|
|
-\subsection{Special points}
|
|
|
-\todo[inline]{Write this}
|
|
|
-
|
|
|
-\subsection{Voronoi}
|
|
|
+\begin{figure}[htp]
|
|
|
+ \centering
|
|
|
+\begin{tikzpicture}
|
|
|
+ \begin{axis}[
|
|
|
+ legend pos=south east,
|
|
|
+ axis x line=middle,
|
|
|
+ axis y line=middle,
|
|
|
+ grid = major,
|
|
|
+ width=0.8\linewidth,
|
|
|
+ height=8cm,
|
|
|
+ grid style={dashed, gray!30},
|
|
|
+ xmin=-3, % start the diagram at this x-coordinate
|
|
|
+ xmax= 3, % end the diagram at this x-coordinate
|
|
|
+ ymin=-3, % start the diagram at this y-coordinate
|
|
|
+ ymax= 3, % end the diagram at this y-coordinate
|
|
|
+ axis background/.style={fill=white},
|
|
|
+ xlabel=$x$,
|
|
|
+ ylabel=$y$,
|
|
|
+ %xticklabels={-2,-1.6,...,7},
|
|
|
+ %yticklabels={-8,-7,...,8},
|
|
|
+ tick align=outside,
|
|
|
+ minor tick num=-3,
|
|
|
+ enlargelimits=true,
|
|
|
+ tension=0.08]
|
|
|
+ \addplot[domain=-3:3, thick,samples=50, red] {x*x*x};
|
|
|
+ \addplot[domain=-3:3, thick,samples=50, green] {x*x*x+x*x};
|
|
|
+ \addplot[domain=-3:3, thick,samples=50, blue] {x*x*x+2*x*x};
|
|
|
+ \addplot[domain=-3:3, thick,samples=50, orange] {x*x*x+x};
|
|
|
+ \addlegendentry{$f_1(x)=x^3$}
|
|
|
+ \addlegendentry{$f_2(x)=x^3 + x^2$}
|
|
|
+ \addlegendentry{$f_2(x)=x^3 + 2 \cdot x^2$}
|
|
|
+ \addlegendentry{$f_1(x)=x^3 + x$}
|
|
|
+ \end{axis}
|
|
|
+\end{tikzpicture}
|
|
|
+ \caption{Cubic functions}
|
|
|
+\end{figure}
|
|
|
|
|
|
-For $b^2 \geq 3ac$
|
|
|
+%
|
|
|
+%\subsection{Special points}
|
|
|
+%\todo[inline]{Write this}
|
|
|
+%
|
|
|
+%\subsection{Voronoi}
|
|
|
+%
|
|
|
+%For $b^2 \geq 3ac$
|
|
|
+%
|
|
|
+%\todo[inline]{Write this}
|
|
|
|
|
|
-\todo[inline]{Write this}
|
|
|
\subsection{Calculate points with minimal distance}
|
|
|
When you want to calculate points with minimal distance, you can
|
|
|
take the same approach as in Equation \ref{eq:minimizingFirstDerivative}:
|
|
|
|
|
|
\begin{align}
|
|
|
0 &\stackrel{!}{=} -2 x_p + 2x -2y_p(f(x))' + (f(x)^2)'\\
|
|
|
- \Leftrightarrow 0 &\stackrel{!}{=} 2 f(x) \cdot f'(x) - 2 y_p f'(x) + 2x - 2 x_p\\
|
|
|
- \Leftrightarrow 0 &\stackrel{!}{=} \underbrace{\left (2 f(x) - 2 y_p \right ) \cdot f'(x)}_{\text{Polynomial of degree 5}} + \underbrace{2x - 2 x_p}_{\text{:-(}}
|
|
|
+ &= 2 f(x) \cdot f'(x) - 2 y_p f'(x) + 2x - 2 x_p\\
|
|
|
+ &= \underbrace{\left (2 f(x) - 2 y_p \right ) \cdot f'(x)}_{\text{Polynomial of degree 5}} + \underbrace{2x - 2 x_p}_{\text{:-(}}
|
|
|
\end{align}
|
|
|
|
|
|
+\subsection{Number of points with minimal distance}
|
|
|
+As there is an algebraic equation of degree 5, there cannot be more
|
|
|
+than 5 solutions.
|
|
|
+\todo[inline]{Can there be 3, 4 or even 5 solutions? Examples!
|
|
|
|
|
|
+After looking at function graphs of cubic functions, I'm pretty
|
|
|
+sure that there cannot be 4 or 5 solutions, no matter how you
|
|
|
+chose the cubic function $f$ and $P$.
|
|
|
|
|
|
-\todo[inline]{Write this}
|
|
|
+I'm also pretty sure that there is no polynomial (no matter what degree)
|
|
|
+that has more than 3 solutions.}
|
|
|
\end{document}
|